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Abstract—In this paper we propose a novel Bayesian network
based model for analysing convergence properties of reinforce-
ment learning (RL) based dynamic spectrum access (DSA)
algorithms. It uses a minimum complexity DSA problem for prob-
abilistic analysis of the joint policy transitions of RL algorithms.
A Monte Carlo simulation of a distributed Q-learning DSA
algorithm shows that the proposed approach exhibits remarkable
accuracy of predicting convergence behaviour of such algorithms.
Furthermore, their behaviour can also be expressed in the form
of an absorbing Markov chain, derived from the novel Bayesian
network model. This representation enables further theoretical
analysis of convergence properties of RL based DSA algorithms.
The main benefit of the analysis tool presented in this paper is
that it enables the design and theoretical evaluation of novel DSA
schemes by extending the proposed Bayesian network model.

Keywords—Distributed Reinforcement Learning; Bayesian Net-
works; Dynamic Spectrum Access

I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resources and assigning them to voice
calls and data transmissions in a way which would provide a
good quality of service (QoS) to the users. Flexible dynamic
spectrum access (DSA) techniques play a key role in utilising
the given spectrum efficiently. This has given rise to novel
wireless communication systems such as cognitive radio net-
works [1] and cognitive cellular systems [2]. Such networks
employ intelligent opportunistic spectrum access techniques
instead of the inefficient static spectrum allocation methods
used in most current cellular systems.

An emerging state-of-the-art technique for intelligent DSA
is reinforcement learning (RL); a machine learning technique
aimed at building up solutions to decision problems only
through trial-and-error [3]. It has been successfully applied to a
range of DSA problems and scenarios, such as cognitive radio
networks [4], femto-cell networks [5], cognitive wireless mesh
networks [6], as well as generic cellular networks [7]. This
paper investigates distributed RL based DSA. The distributed
RL approach has advantages over centralised methods in that
no communication overhead is required to achieve the learning
objective, and the network operation does not rely on a single
computing unit. It also allows for easier insertion and removal
of base stations from the network, if necessary. For example,
such distributed opportunistic protocols are well suited to
temporary event networks and disaster relief scenarios, where
rapidly deployable network architectures with unplanned or
variable topologies may be required to supplement any existing

wireless infrastructure [8]. An example of such a scenario
investigated in the EU FP7 ABSOLUTE project is a temporary
cognitive cellular infrastructure that is deployed in and around
a stadium to provide extra capacity and coverage to the mobile
subscribers and event organizers involved in a temporary event,
e.g. a football match or a concert [9].

An important step in designing RL algorithms not only for
DSA applications, but also for any other type of learning prob-
lems, is to perform theoretical analysis of their convergence.
There is a large amount of previous work on probabilistic
analysis of RL algorithms applied to wireless communications
problems, where the researchers have stochastically mod-
elled the RL problems to derive their optimal solutions and
compare them with the solutions obtained through learning.
For example, Pandana and Liu [10] model the problem of
average throughput maximization per total consumed energy
in a wireless sensor network as a Markov decision proccess
(MDP), derive an optimal solution analytically, and compare
it with one achieved by an RL algorithm. In another example
Song and Jamalipour [11] model a vertical handoff decision
problem as a semi-MDP and use Q-learning to solve this model
directly. However, none of the stochastic models proposed in
the wireless communications domain help to understand the
dynamics of the RL algorithms themselves, as opposed to the
learning problems they are applied to.

The purpose of this paper is to propose a simple Bayesian
network model for analysing convergence properties of RL
based DSA algorithms. This model is based on a minimum
complexity inter-cell interference problem and provides a
platform for theoretical evaluation of RL algorithms before
they are applied to complex real-world DSA problems. It is
briefly introduced by us in [15] for aiding the design of a novel
RL based DSA scheme. However, this paper provides a signifi-
cantly more detailed description and an empirical validation of
this model. In previous work on combining Bayesian networks
and RL, the purpose of Bayesian networks was to enhance the
performance of RL algorithms by being used as a framework
for reasoning under uncertainty, e.g. [12][13]. There is no
evidence in the literature of using Bayesian networks as an
analysis tool for RL algorithms.

The rest of the paper is organized as follows: Section
II introduces the problem of DSA in cellular networks. In
Section III we explain distributed RL and give details of the
distributed Q-learning algorithm used in this paper. Section IV
presents our novel Bayesian network model for joint policy
transition analysis, and assesses its accuracy using a Monte
Carlo simulation. The conclusions are given in Section V.



II. DYNAMIC SPECTRUM ACCESS

In DSA networks all base stations are allowed opportunistic
access to the whole spectrum pool available to the network.
This approach has been shown to be significantly more flexible
and efficient than fixed spectrum allocation methods [14].
The main limiting factor for network throughput and QoS
performance in DSA networks is inter-cell interference, since
all cells are allowed to use the same spectrum. This section
presents a simple network model used for the analysis of inter-
cell interference in this paper.

A. Simple Inter-Cell Interference Model

Figure 1 shows a small and analytically tractable DSA net-
work model which can be related to most inter-cell interference
problems in general. The aim of this model is to provide a
small yet sufficiently complex DSA problem for theoretical
analysis of RL algorithms which can then be extrapolated to
larger and more realistic scenarios.

UE1 UE2BS1 BS2

Signal Interference

Figure 1. 2 BS 2 UE network model [15]

The network consists of 2 base stations (BSs) and 2 user
equipments (UEs), each connected to its own BS. If one of
the UEs is located within the interference range of the other
BS, it suffers from harmful co-channel interference from it.
The network is assumed to be allocated 2 subchannels, and
the task of both BSs is to learn to use their own subchannel
through distributed RL.

III. DISTRIBUTED REINFORCEMENT LEARNING

In distributed RL based DSA the task of every BS is
to learn to prioritise among the available subchannels only
through trial-and-error, with no frequency planning involved,
and with no information exchange with other BSs, e.g. [7]. In
this way, frequency reuse patterns emerge autonomously using
distributed artificial intelligence with no requirement for any
prior knowledge of a given environment.

A. Reinforcement Learning

RL is a model-free type of machine learning which is aimed
at learning the desirability of taking any available action in any
state of the environment only through trial-and error [3]. This
desirability of an action is represented by a numerical value
known as the Q-value - the expected cumulative reward for
taking a particular action in a particular state, as shown in the
equation below:

Q(s, a) = E

[

T
∑

t=0

γtrt

]

(1)

where Q(s, a) is the Q-value of action a in state s, rt is the
numerical reward received t time steps after action a is taken
in state s, T is the total number of time steps until the end of

the learning process or episode, and γ ∈ [0, 1] is a discount
factor.

The task of an RL algorithm is to estimate Q(s, a) for every
action in every state, which are then stored in an array known
as the Q-table. In some cases where an environment does not
have to be represented by states, only the action space and a
1-dimensional Q-table Q(a) can be considered [16]. The job
of an RL algorithm then becomes simpler; it aims to estimate
an expected value of a single reward for each action available
to the learning agent:

Q(a) = E[rt] (2)

This is also applicable to distributed Q-learning based DSA in
cellular systems, e.g. [7][17].

B. Distributed Stateless Q-Learning

One of the most widely used RL algorithms is Q-learning
[18]. In particular, a simple stateless variant of this algorithm,
as formulated in [16], has been shown to be effective for
several distributed DSA learning problems, e.g. [7][17].

Each BS maintains a Q-tableQ(a) such that every subchan-
nel a has a Q-value associated with it. Upon each file arrival,
the BS either assigns a subchannel to its transmission or blocks
it if all subchannels are occupied. It decides which subchannel
to assign based on the current Q-table and the greedy action
selection strategy described by the following equation:

â = argmax
a

(Q(a)) (3)

where â is the subchannel chosen for assignment, and Q(a) is
the Q-value of subchannel a.

The values in the Q-tables are initialised to zero, so all
BSs start learning with equal choice among all available
subchannels. A Q-table is updated by a BS each time it
attempts to assign a subchannel to a file transmission in the
form of a positive or a negative reinforcement. The recursive
update equation for stateless Q-learning, as defined in [16], is
given below:

Q(a)← (1− α)Q(a) + αr (4)

where Q(a) represents the Q-value of the subchannel a, r
is the reward associated with the most recent trial and is
determined by a reward function, and α ∈ [0, 1] is the learning
rate parameter which weights recent experience with respect
to previous estimates of the Q-values.

The reward function, which is generally applicable to a
wide range of RL problems and which has been successfully
applied to DSA problems in the past [4][17], returns two
values:

• r = −1 (negative reinforcement), if the file trans-
mission failed due to excessive interference on the
selected subchannel.

• r = 1 (positive reinforcement), if the file transmission
is completed using the selected subchannel.

The choice of the learning rate values for this type of
distributed Q-learning based DSA problems is thoroughly
investigated in [17]. The best performance is achieved by using



the Win-or-Learn-Fast (WoLF) principle [19] where a lower
value of α is used for successful trials, and a higher value
of α is used for failed trials. In this way, the learning agents
learn faster when “losing” and more slowly when “winning”.
For example, the WoLF learning rates used in this paper are
the following:

α =

{

0.01 r = 1
0.1 r = −1

(5)

where the value of α when r = −1 is significantly higher than
when r = 1.

IV. JOINT POLICY TRANSITION ANALYSIS

Bayesian networks are a powerful tool for modelling con-
ditional dependencies among stochastic variables [20]. This
section explains our proposed Bayesian network based ap-
proach for analysing convergence of distributed RL algorithms
by modelling joint policy transitions of the learning agents.

A. Bayesian Network Model

Figure 2 presents the Bayesian network which describes
the behaviour of distributed RL introduced in Section III when
applied to the simple DSA network model from Figure 1.

The variables used to denote the Bayesian network nodes
are the following:
Πn ∈ {Same,Diff} - the joint policy of the BSs after
n learning iterations. The policy of a BS is defined as its
preferred subchannel πx ∈ {1, 2} and is derived from the Q-
table based on (3). Πn takes two values of interest - whether
the policies of 2 BSs are the same or different (Πn = Diff
is the learning objective).
IUEx ∈ {Y es,No} - whether or not UE1 or UE2 is located
within the interference range of the adjacent BS during the
current file arrival.
TxOL ∈ {Y es,No} - whether file transmissions to UE1 and
UE2 overlap in time during the current iteration.
RUEx ∈ {S, F} - whether a file transmission to UE1 or UE2
was successful (S), or whether it failed (F ) due to interference.
It is conditionally dependent on Πn, IUEx and TxOL.
Πn+1 ∈ {Same,Diff} - the joint policy after the Q-learning
updates described in (4), as a result of the outcome at the
current iteration. It is conditionally dependent on Πn, RUE1

and RUE2.

Πn

Πn+1

RUE1 RUE2

IUE1 IUE2TxOL

Figure 2. Bayesian network describing the behaviour of distributed Q-learning

Based on the conditional dependencies described above and
depicted in Figure 2, the equation for calculating the joint
probability distribution over all variables Pjoint = P (Πn+1,
Πn, RUE1, RUE2, IUE1, IUE2, TxOL) is the following:

Pjoint = P (Πn+1|Πn, RUE1, RUE2)
×P (RUE1|Πn, IUE1, T xOL) P (RUE2|Πn, IUE2, T xOL)
×P (Πn) P (IUE1) P (IUE2) P (TxOL)

(6)
which consists of a number of prior probabilities of the form
P (X), and conditional probabilities of the form P (X |Y1...Yn).

The prior probability distributions that appropriately de-
scribe the scenario depicted in Figure 1 are defined in Table I.
Before any file arrivals at either BS, the Q-tables of both BSs
are initialised to zero for both subchannels. Therefore, there is
a 50% chance of the BSs choosing the same subchannel, since
both of them choose a subchannel at random, i.e. P (Π0 =
Same) = 0.5. Furthermore, it is assumed that the interference
range overlap of the BSs is such that there is a 40% chance
of a UE being located in it, i.e. P (IUEx = Y es) = 0.4.
Finally, the offered traffic level is assumed to produce a 60%
chance of transmissions to both UEs overlapping in time at
any given learning iteration, thus potentially resulting in inter-
cell interference: P (TxOL = Y es) = 0.6. The values chosen
for P (IUEx) and P (TxOL) only affect the relative difficulty
of the DSA problem. They can be changed without the loss of
generality of the proposed probabilistic model.

The conditional probability distributions are defined in
Table II. The values used for the P (RUEx|Πn, IUEx, T xOL)
distribution state that a transmission to UE1 or UE2 will
fail with a probability of 1 (RUEx = F ), if the given UE is
within the interference range of the other BS (IUEx = Y es),
transmissions to both UEs overlap in time (TxOL = Y es) and
both BSs have chosen the same subchannel (Πn = Same).
Whereas, if Πn = Diff , IUEx = No or TxOL = No, then
the transmission will be successful: RUEx = S.

The P (Πn+1|Πn, RUE1, RUE2) table defines how the Q-
learning policies of both BSs (Πn+1) are likely to change,

TABLE I. PRIOR PROBABILITY DISTRIBUTIONS

P (Π0) P (IUEx) P (TxOL)

Same Diff Yes No Yes No

0.5 0.5 0.4 0.6 0.6 0.4

TABLE II. CONDITIONAL PROBABILITY DISTRIBUTIONS

P (RUEx|Πn, IUEx, TxOL)

S 0 1 1 1 1 1 1 1

F 1 0 0 0 0 0 0 0

Same Same Same Same Diff Diff Diff Diff

Yes Yes No No Yes Yes No No

Yes No Yes No Yes No Yes No

Πn, IUEx, TxOL

P (Πn+1|Πn, RUE1, RUE2)

Same 1 Low Low High 0

Diff 0 High High Low 1

Same Same Same Same Diff

S, S S, F F, S F, F S, S

Πn, RUE1, RUE2



given their current joint policy Πn, and the result of trans-
missions to both UEs (RUE1 and RUE2). Both BSs are run-
ning a stateless Q-learning algorithm introduced in Subsection
III-B. Firstly, if the transmissions to both UEs are successful
(RUE1 = RUE2 = S), then both BSs will reward their re-
spective subchannels and maintain the same policies regardless
whether they are the same or different (Πn+1 = Πn). Secondly,
if Πn is Same and only a transmission to one of the UEs
failed ({S, F} or {F, S}), this UE is more likely to change its
policy due to the WoLF learning rate used in its Q-learning
algorithm, described by (5). Therefore, there is a relatively
high probability of the policies being different at the next
iteration: P (Πn+1 = Diff) = High. If transmissions to
both UEs fail ({F, F}), both BSs are likely to change their
policies, thus making Πn+1 = Same a more likely outcome:
P (Πn+1 = Same) = High. The remaining 3 combinations
of Πn, RUE1 and RUE2 values are not considered, since they
can never occur according to the P (RUEx|Πn, IUEx, T xOL)
conditional probability distribution. Regardless of the values
used for these combinations in the P (Πn+1|Πn, RUE1, RUE2)
table, they will be multiplied by zero during the calculation of
the joint probability distribution defined in (6).

The aim of the Bayesian network model described above
is to establish the marginal likelihood of the joint Q-learning
policy at the next iteration P (Πn+1) by taking a sum over all
other variables in Pjoint as follows:

P (Πn+1) =
∑

Πn

∑

RUE1

∑

RUE2

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (7)

The resulting distribution can then be substituted as the
prior for the next learning iteration: P (Πn) ← P (Πn+1).
This enables iterative evaluation of the Bayesian network
model which shows how the probability of transmission failure
P (RUEx) and the probability of BSs using different sub-
channels P (Πn) change over time, as the learning process
progresses. The P (RUEx) distribution can be obtained using
the principle of marginalization as follows:

P (RUE1/2) =
∑

Πn+1

∑

Πn

∑

RUE2/1

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (8)

This probabilistic analysis is only valid for the 2 BS 2
UE network model depicted in Figure 1, and is not designed
to be scalable to larger and more realistic networks. The
purpose of this model is to enable theoretical analysis of
the relative behaviour of RL algorithms using a simple and
tractable problem. An additional, useful approach to evaluating
such algorithms, that is outside of the scope of this paper,
is performing realistic large scale simulations and assessing
similarities between the simulation results and the theoretical
predictions.

B. Probabilistic Analysis vs Monte Carlo Simulation

Figure 3 shows the expected convergence behaviour of dis-
tributed Q-learning analytically derived through iterative evalu-
ation of the Bayesian network model presented in this section.
The values for High and Low in the conditional probability
distributions in Table II are assumed to be {0.9, 0.1}. However,
changing these values to other interpretations of “high” and
“low” probabilities had negligible effect on the convergence
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Figure 3. Convergence of distributed Q-learning using Bayesian network
analysis and a Monte Carlo simulation

patterns shown in Figure 3. The analytical results are compared
with a Monte Carlo simulation, where the Q-learning algorithm
from Subsection III-B is applied to the scenario described in
Subsection II-A. At every transmission arrival the simulation
experiment drew the inter-cell interference parameters from the
prior probabilities defined in Table I. The probabilities plotted
for every learning iteration were obtained by averaging over
10,000 independent runs.

The comparison of the convergence behaviour predicted
by the Bayesian network model and that achieved by the
Monte Carlo simulation demonstrates remarkable accuracy of
the joint policy transition analysis tool proposed in this paper.
Therefore, it is a valid and effective approach for stochastic
modelling of RL based DSA algorithms. It can be used for
designing and analysing the convergence of more sophisticated
RL algorithms by adding nodes and edges to the Bayesian
network from Figure 2. The added nodes and edges would
represent additional functionality and conditional dependencies
introduced by the new schemes. This approach would clearly
demonstrate in what ways other schemes designed in future
using this method extend the basic distributed RL approach
depicted in Figure 2. For example, a novel heuristically
accelerated RL scheme was successfully analysed using an
extension to the Bayesian network model proposed in this
paper, and was then also evaluated using large scale network
simulations in [15].

C. Absorbing Markov Chain Formulation

Figure 4 shows an alternative formulation of the conver-
gence properties of distributed Q-learning derived from the
Bayesian network model introduced in Subsection IV-A. It is
a Markov chain describing the probabilities of transitions be-
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Figure 4. An absorbing Markov chain describing the transitions between two
states of the joint policy derived from Bayesian network model of the 2 BS
2 UE cellular network

tween two different states of the joint policy - Same(π1 = π2)
and Diff(π1 6= π2). The transition probabilities are taken
from the P (Πn+1|Πn) distribution, which in turn is calculated
using the following definition of conditional probability:

P (Πn+1|Πn) =
P (Πn+1,Πn)

P (Πn)
(9)

where P (Πn+1,Πn) is obtained by marginalizing all other
variables from the overall joint distribution as follows:

P (Πn+1,Πn) =
∑

RUE1

∑

RUE2

∑

IUE1

∑

IUE2

∑

TxOL

Pjoint (10)

Firstly, the Markov chain in Figure 4 shows that “π1 6= π2”
is an absorbing state, i.e. a state that cannot be left, since
the probability of going from “π1 6= π2” to “π1 = π2”
is zero. Therefore, this is an absorbing Markov chain which
formally demonstrates that the RL algorithm is guaranteed to
converge on the desired absorbing state “π1 6= π2”. The speed
of convergence is controlled by the probability of going from
“π1 = π2” to “π1 6= π2”, which in this case is 0.27. The
objective of future more advanced RL algorithms designed
using the method proposed in this paper is to increase this
transition probability to speed up the convergence, whilst
preserving the absorbing state where “π1 6= π2”.

V. CONCLUSION

The Bayesian network based joint policy transition analysis
methodology proposed in this paper is able to provide a
simple and accurate probabilistic model of distributed RL
algorithms applied to a minimum complexity DSA problem.
A Monte Carlo simulation of a distributed Q-learning based
DSA algorithm shows that the proposed approach demonstrates
remarkably accurate prediction of the convergence behaviour
of such algorithms. Furthermore, their behaviour can also be
expressed in the form of an absorbing Markov chain, derived
from the novel Bayesian network model. This representation
enables further theoretical analysis of convergence properties
of RL based DSA algorithms. Finally, the main benefit of the
analysis tool presented in this paper is that it enables the design
and theoretical evaluation of novel RL based DSA algorithms
by extending the proposed Bayesian network model, that
describes a standard distributed Q-learning scheme.
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