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Abstract—In this study we investigate the use of case-based
reinforcement learning (RL) for dynamic secondary spectrum
sharing in cognitive cellular systems for temporary events. The
performance of the proposed case-based RL scheme is evaluated
using system level simulations that involve a stadium small cell
network, an eNB on an aerial platform and a local primary LTE
network. Compared to classical RL, the case-based RL approach
results in increased adaptivity of the cognitive cellular system
to sudden changes in its environment caused by the aerial eNB
being dynamically switched on and off. We also show that a
cognitive cellular system that employs the proposed dynamic
spectrum access scheme is able to accommodate a 51-fold increase
in offered traffic with no need for additional spectrum and with
no degradation in the quality of service of the primary users.
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I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resource blocks or subchannels and
assigning them to voice calls and data transmissions in a way
which provides a good quality of service (QoS) to the users.
Flexible dynamic spectrum access (DSA) techniques play a key
role in utilising the given spectrum efficiently. For example,
cognitive cellular systems employ intelligent opportunistic
DSA techniques that allow them to access licensed spectrum
underutilized by the incumbent users [1].

An emerging state-of-the-art technique for intelligent DSA
is reinforcement learning (RL); a machine learning technique
aimed at building up solutions to decision problems only
through trial-and-error [2]. The most widely used RL algorithm
in both artificial intelligence and wireless communications
domains is Q-learning [3]. Therefore, the algorithm developed
in this study employs distributed Q-learning based DSA.

The purpose of this paper is to propose a way of improving
the stability of RL based DSA algorithms for temporary event
networks with dynamic topologies that use secondary LTE
spectrum sharing. The technique investigated for solving this
problem is case-based RL, a combination of RL and case-
based reasoning (CBR). CBR is broadly defined as the process
of solving new problems by using the solutions to similar
problems solved in the past [4]. In case-based RL these solu-
tions are learned by using an RL algorithm. The only example
of applying this methodology in the wireless communications
domain is [5], where a DSA scheme is designed for a small
generic cellular network with its own dedicated spectrum, i.e.
without the presence of the primary users.

The rest of the paper is organised as follows: Section II
introduces the temporary event scenario investigated in this
study. Section III explains distributed Q-learning based DSA.
In Section IV we introduce the concept of case-based RL
and propose a case-based Q-learning scheme for dynamic
secondary spectrum sharing. Simulation results are discussed
in Section V, and the conclusions are given in Section VI.

II. TEMPORARY EVENT SCENARIO

The spectrum sharing problem investigated in this paper
and currently considered in the EU FP7 ABSOLUTE project is
depicted in Figure 1. It is designed for a stadium event scenario
and involves a temporary cognitive cellular infrastructure that
is deployed in and around a stadium to provide extra capacity
and coverage to the users and event organizers involved in a
temporary event, e.g. a football match or a concert.
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Figure 1. Stadium temporary event scenario

The cognitive small cells and the AeNB have secondary
access to a 20 MHz LTE channel, also used by a network of
3 local primary eNBs (PeNBs). Furthermore, in this paper we
consider a dynamic topology case, where the AeNB can be
switched on and off several times throughout the duration of
the event. For example, it can be switched on for providing
the event organizers with a dedicated access network when
required, and switched off to have its batteries recharged or to
minimise the energy consumption in general.

III. DISTRIBUTED Q-LEARNING BASED DYNAMIC

SPECTRUM ACCESS

One of the most successful and widely used RL algorithms
is Q-learning [3]. In particular, a simple stateless variant of this



algorithm, as formulated in [6], has been shown to be effective
for several distributed DSA problems, e.g. [5][7].

Each eNB maintains a Q-table Q(a) such that every sub-
channel a has an expected reward or Q-value associated with
it. Upon each file arrival, the eNB either assigns a subchannel
to its transmission or blocks it if all subchannels are occupied.
It decides which subchannel to assign based on the current
Q-table and the greedy action selection strategy described by
the following equation:

â = argmax
a

(Q(a)), a ∈ A′, A′ ⊂ A (1)

where â is the subchannel chosen for assignment out of the set
of currently unoccupied subchannels A′, Q(a) is the Q-value
of subchannel a, and A is the full set of subchannels.

The values in the Q-tables are initialised to zero, so all
eNBs start learning with equal choice among all available
subchannels. A Q-table is updated by an eNB each time it
attempts to assign a subchannel to a file transmission. The
recursive update equation for stateless Q-learning, as defined
in [6], is given below:

Q(a)← (1 − α)Q(a) + αr (2)

where r is the reward associated with the most recent trial
and is determined by a reward function, and α ∈ [0, 1] is the
learning rate parameter which weights recent experience with
respect to previous estimates of the Q-values. The choice of
these parameters is described in [7].

IV. CASE-BASED REINFORCEMENT LEARNING

Case-based RL is a combination of RL and case-based
reasoning (CBR), where the solutions to previously known
problems are used for helping to learn solutions to new
problems [4]. For example, in [5] we apply this technique to
make the base stations of a small cellular network learn appro-
priate spectrum assignment policies for three distinct network
topology phases. Algorithm 1 shows our proposed adaptation
of this case-based Q-learning scheme to the dynamic secondary
spectrum sharing scenario described in Section II. The func-
tionality afforded by CBR, as an extension to classical RL, is
described by steps 4, 5, and 9 of Algorithm 1.

Algorithm 1 Subchannel assignment using case-based Q-
learning for dynamic secondary spectrum sharing

1: if all subchannels are occupied then
2: Block transmission
3: else
4: Identify current case (AeNB is on/off)
5: Choose Q-table most suitable for the identified case
6: Assign the best subchannel using Equation (1)
7: Observe the outcome, calculate the reward r = ±1
8: Update Q(a) using Equation (2)
9: Store Q-table and associate it with current case
10: end if

V. SIMULATION RESULTS AND DISCUSSION

The spectrum sharing problem described in Section II
involves an AeNB and a network of small cell eNBs that

have to share spectrum among themselves and with a primary
system of local eNBs operating in the area.

The primary system is assumed to employ a dynamic
ICIC scheme, where all three eNBs exchange their current
spectrum usage as RNTP messages every 20 ms, and exclude
the subchannels currently used by the other two eNBs from
their available subchannel list [8].

A. Simulation Setup

The stadium small cell network architecture [7] is such that
the users are located in a circular spectator area 53.7 - 113.7 m
from the centre of the stadium. The spectator area is covered
by 78 eNBs arranged in three rings at 1 m height, e.g. with
antennas attached to the backs of the seats or to the railings
between different row levels. Seat width is assumed to be 0.5
m, and the space between rows is 1.5 m, which yields the
total capacity of 43,103 seats. 25% of the stadium capacity
is filled with randomly distributed wireless subscribers, i.e.
≈ 10,776 user equipments (UEs). 500 UEs are randomly
distributed outside the stadium in a circular area from the
stadium boundary out to 1.5 km from the stadium centre point.
The offered traffic is 20 Mb/s outside of the stadium and 1
Gb/s inside. The other key parameters and assumptions of the
simulation model are listed in Table I.

TABLE I. NETWORK MODEL PARAMETERS AND ASSUMPTIONS

Parameter Value

Channel bandwidth 20 MHz: 100 LTE virtual resource blocks (VRBs)

Subchannel bandwidth 4 VRBs: 4 × 180 kHz

Frequency band 2.6 GHz

UE receiver noise floor 94 dBm

Stadium propagation model WINNER II B3 [7]

Outdoor propagation model WINNER II C1 [7]

Propagation model between

stadium and outdoors

Combined WINNER II C4 with C1 term [7]

Propagation model between

AeNB and the ground

Free space + 8dB log-normal shadowing

Traffic model 3GPP FTP Traffic Model 1, file size - 4.2 Mb

(≈0.5 MB) [7]

Retransmission scheduling Uniform random back-off between 0 and 960 ms

Link model 3GPP Truncated Shannon Bound model [7]

Primary eNB Tx power 10 dBW

Assumptions

Cognitive small cell and aerial eNBs employ open loop power control, using a

constant Rx power of -74 dBm (20 dB Signal-to-Noise Ratio)

The minimum Signal-to-Interference-plus-Noise Ratio (SINR) allowed to sup-

port data transmission is 1.8 dB

One subchannel (4 VRBs) is allocated to every data transmission

The cognitive small cell network and the AeNB which
is located above the stadium centre point at 300 m altitude
have secondary access to a 20 MHz LTE channel also used
by the primary network. The latter consists of 3 primary eNBs
(PeNBs) whose coordinates, with respect to the stadium centre
point, are (−600,−750), (100, 750) and (750,−800) m.

B. Temporal Performance

Figure 2 shows the average temporal performance of the
secondary network in terms of its probability of retransmission
(P (retransmission)). The plots are obtained by averaging
every data point using the results from 50 simulations with
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(a) Stadium small cell network
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(b) Aerial eNB

Figure 2. Probability of retransmission in the secondary cognitive network

different randomly generated UE locations and initial traffic.
All simulations start with the AeNB being switched off. The
vertical dash-dot lines in Figure 2 represent the times at which
the AeNB is switched on and back off again.

Figure 2a shows how well the stadium small cell network
adapts to the sudden irregular changes in its environment
caused by the AeNB being switched on/off. It demonstrates
that the “case-based Q-learning” scheme proposed in this study
can seamlessly switch between the two different cases of the
environment, compared with the classical Q-learning approach
which has to adapt its policies anew every time.

The difference in performance between the scheme pro-
posed in this paper and the two baseline schemes is even
more substantial in Figure 2b, which shows the average
P (retransmission) temporal response of the AeNB. Firstly,
both learning schemes significantly outperform the purely
heuristic “dynamic ICIC” approach, same as that used in the
primary system. Secondly, compared with classical Q-learning,
the novel CBR functionality implemented in all cognitive eNBs
results in a 70% reduction in P (retransmission) experienced
by the AeNB users shortly after the AeNB is switched on for
the second time and all subsequent times.

C. Primary User Quality of Service

An essential requirement for cognitive cellular systems is
to ensure that they do not have a harmful effect on the QoS
in the primary system. Table II compares the QoS provided to
the users outside of the stadium with and without the presence
of the stadium users and the secondary network.

The results in Table II show that it is possible to develop
a temporary heterogeneous cognitive network that is capable

of servicing a dramatic increase in the offered traffic (1 Gb/s
in addition to the original 20 Mb/s, i.e. by a factor of 51), but
with no need for additional spectrum and with no degradation
in the primary user QoS.

TABLE II. PRIMARY USER QUALITY OF SERVICE (QOS) WITH AND

WITHOUT THE PRESENCE OF THE SECONDARY NETWORK (SN)

QoS metric Without SN With SN

Probability of retransmission 3.0 × 10
−3

3.4 × 10
−3

Mean user throughput (UT), Mb/s 3.04 3.07

95th percentile UT, Mb/s 3.16 3.16

5th percentile UT, Mb/s 2.70 2.89

Mean UT 0-100 m from the stadium, Mb/s 2.96 2.89

VI. CONCLUSION

The case-based RL method proposed in this study is an
effective and feasible approach to dynamic secondary spectrum
sharing in temporary cognitive cellular systems with dynamic
topologies. System level simulations that involve a stadium
small cell network, an eNB on an aerial platform and a local
primary LTE network show that augmenting RL with the CBR
functionality results in increased adaptivity of the cognitive
cellular system to sudden changes in its radio environment,
caused by the aerial eNB being dynamically switched on and
off. For example, it is capable of achieving a 70% reduction
in the number of retransmissions of the aerial eNB shortly
after being switched on, compared to a classical RL approach.
Furthermore, the cognitive cellular system, that employs the
proposed DSA scheme with only secondary access to an LTE
channel, is shown to accommodate a 51-fold increase in the
offered traffic with no need for additional spectrum and with
no degradation in the QoS of the primary users.
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