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Abstract—Case-based reinforcement learning is a combination
of reinforcement learning (RL) and case-based reasoning wbth
has been successfully applied to a variety of artificial intéigence
problems concerned with dynamic environments. This paper
demonstrates how case-based RL can be applied to distribude
dynamic spectrum assignment in cellular networks with dynanic
topologies, and what performance improvements can be exped
from using this approach in favour of a standard RL algorithm.
Simulation results have shown that augmenting a stateless -Q
learning algorithm with case-based reasoning functionaty has
significantly improved the temporal performance of a 9 base
station network with dynamic topology. It has mitigated the
performance degradation in terms of the probabilities of cdl
blocking and dropping after transitions between different phases
of the network topology, thus substantially increasing theusable
range of traffic loads of the network.
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I. INTRODUCTION

dynamic spectrum assignment, where no information exahang
is assumed among individually learning base stations. This
makes it more challenging for the base stations to learn good
policies in dynamic environments. Nevertheless, theidisted

RL approach has advantages over centralised methods in that
no communication overhead is required to achieve the legrni
objective, and the network operation does not rely on a singl
computing unit.

Case-based reinforcement learning is RL augmented with
case-based reasoning functionality [8]. Case-based maaso
is broadly defined as the process of solving new problems
by using the solutions to similar problems solved in the
past [9]. Combining case-based reasoning and reinforcemen
learning means that these solutions are learned by using an
RL algorithm. The combination of these two techniques has
been successfully applied to dynamic inventory control],[10
computer games [11] and RoboCup Soccer [12] [13]. However,
there is no evidence in the literature of applications o thi
method in the wireless communications domain.

Spectrum assignment is a fundamental task of a mobile The purpose of this paper is to demonstrate how a case-

cellular network, concerned with dividing the availableesp

based reinforcement learning algorithm for distributedaipic

trum into a set of channels or resource blocks and assigningpectrum assignment could be applied in a cellular network
them to the incoming calls in a way which provides a goodwith dynamic topology, and how it improves its temporal
quality of service (QoS) to the users. Modern communicatiorblocking and dropping probability performance.

systems, such as cognitive radio and LTE networks, require
more intelligent and flexible schemes for spectrum assigrtme

The rest of the paper is organised as follows: in Section

than static spectrum allocation. Such schemes belong to tH theé network model and the learning problem are defined.

area of dynamic spectrum assignment.

In Section Ill the development of the RL algorithm for
distributed dynamic spectrum assignment is describediddec

Reinforcement learning (RL) is a machine learning tech-V introduces the concept of case-based RL and how it could

nique for learning solutions to various decision problemlyo

be applied to the given spectrum assignment learning pmoble

by trial-and error [1]. In terms of dynamic spectrum assign-In Section V the simulation results are discussed. Finally,
ment, RL is a state-of-the-art technique which has recentlyonclusions are given in Section VI.
been attracting a lot of attention in the wireless communica

tions research community. It has been successfully appdied
a range of problems such as LTE pico cells [2], cognitiveaadi

[3] [4] and multi-hop backhaul networks [5].

II. DYNAMIC SPECTRUMASSIGNMENTLEARNING
PROBLEM

A. Cellular Network Model

Topology management is an increasingly popular area of

research, especially in green communications, where &-rad

The cellular network used in this paper is a 6x6 km rural

off between the QoS provided to the users and energy savingervice area covered by a 3x3 grid of base stations spaced 2
of the network is achieved by dynamically switching variouskm apart. The user equipment (UE) is geographically static

base stations on/off, e.g. [6], [7]. This results in netveowkith

and randomly distributed across the whole area. The network

dynamic topologies, which are challenging environments fo architecture is depicted in Figure 1. We stress that thetgpac
reinforcement learning based dynamic spectrum assignatent assignment scheme used in this paper is fully distributed

gorithms. Furthermore, this paper is concerned with distad

and does not employ any backhaul communications among
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Figure 1. Network architecture Figure 2. 3 phases of the network topology

the base stations or a centralised control unit. The badkhayesigned for line-of-sight (LOS) rural macro-cell sceoari

network is only used to carry the mobile data traffic. is used (WINNER Il D1), since it is most relevant to the
The other assumptions used in the network model are listeB€twork architecture discussed in this paper. The equédion
below: calculating path loss using this model is given below:

e The available resources are divided into 20 logical 'L = 2L.5l0gi0(d) + 44.2 + 20log10(0.2fc) + SFL (1)

channels. _A_djacent-ChanneI_Interference_ |s_assumeg,herePL is the path loss in dBd is the distance between
to be_ negligible and only uplink communications '€ the receiver and the transmitter in metrgs, is the carrier
considered. frequency in GHz and'F'L is the log-normal shadow fading

e Fixed transmission power of 23 dBm and 2.6 GHzloss with the standard deviation of 4dB and 0dB mean.
frequency band are used by all UEs.

e The minimum Signal to Interference plus Noise Ratio D. Traffic Model

(SINR) for accepting a new call is 5 dB, and the calls  The call arrival rate is modelled as a Poisson process with
are dropped if the SINR falls below 1.8 dB. a constant mean arrival rate of;z (calls per minute per

e The receiver noise floor is -100 dBm, obtained byUE) for_ all UEs in the network. Therefore, the traffic load is
assuming 290 K temperature, 10 MHz total bandwidthapprqu_ately uniform across the whol_e service area. Th_e ca
and 4dB noise figure. duration is also an exponentially distributed random \#eia

with the mean holding time of 1 minute.
e Each UE chooses which base station to connect to
ismuicsfééhat the overall attenuation of its signal is min-g. Learning Objective
The objective of the learning problem investigated in this
paper is for all base stations to prioritise among the albkla
channels in a fully distributed fashion, only by trial-aadror.
No communication between the base stations is assumed in

order to achieve this objective. Therefore, it is a probledm o

Green topology management schemes switch the bag#stributed dynamic spectrum assignment.
stations on and off to optimise a trade-off between network Network-wide probabilities of call blocking (BP) and

QoS and energy savings, based on the amount of local traﬁi&ropping (DP) are used to assess the performance of the

received at each base station [6] [7]. This results in c@llul gpectrym assignment algorithms described in this papes. Th
networks with dynamic topologies, where the environment fo neyork is assumed to be serviceable only if the BP does not

reinforcement learing based dynamic spectrum assignmegceed 5% and the DP does not exceed 0.5%. In general,
algorithms is highly dynamic and challenging to control. 5| gropping is considered significantly less tolerablanth

The experiments reported in our paper do not imp|emenb|0C.king. Therefore, it is ]UStlflable to set the DP threshol
any particular topology management scheme. However, thé0 times lower than that for BP [15] [16].
dynamic nature of the network topology is simulated by
making the network alternate among 3 different phases shown IIl. REINFORCEMENTLEARNING
in Figure 2. This assumption was made because this paper ) o .
focuses on the spectrum assignment algorithms and how they Reinforcement learning is a model-free type of machine
perform in the networks with dynamic topologies. Topo|ogylearn|ng which is aimed at learning the desirability of taki

management itself is beyond the scope of this paper. any available action in any state of the environment only by
trial-and error [1]. This desirability of an action is repeated

by a numerical value known as the Q-value - an expected
cumulative reward for taking a particular action in a paric

The propagation model used to calculate the path losstate. The job of a RL algorithm is to estimate the Q-values
between the UE transmitters and the base station receivefsr every action in every state, which are all stored in aaarr
is the WINNER Il model [14]. In particular, the variation known as the Q-table. In some cases where an environment

e The transmission is continuous until a call is com-
pleted.

B. Dynamic Topology

C. Radio Propagation Model



is not represented by states, only the action space and a D- Learning Rate

dimensional Q-table are considered [17]. This is also tlse ca L .
investigated in this paper. Each base station in the network learns independently,

and the learning environment, as perceived by each indiidu
learning agent, depends on the choices made by other lgarnin
agents. Therefore the environment is locally dynamic froe t
One of the most successful and widely used RL algorithmsiewpoint of each individual base station. Furthermores th
is Q-learning, introduced in [18]. Since the learning peshl environment investigated in this paper is also globallyaiyic
described in the previous section does not require a stai@ue to changes in network topology explained in Subsection
representation, a simple stateless variation of this dlgar  |I-B.
formulated in [17], is used in this paper.

A. Stateless Q-Learning

) o Fixed values of the learning rata)are well-suited to such
Each base station maintains a Q-table such that everyynamic learning problems, since they essentially intoadie
channel has an expected reward or Q-value associated with gffect of a moving window, where the impact of older rewards

The Q-value represents the desirability of assigning aqéar o the current estimate gradually fades away, as seen from
channel to an arriving call. Upon each call arrival, the bas%quation ).

station either assigns an available channel to the callankis|

it if no channels are available. The benefits of employing the Win-or-Learn-Fast (WoLF)

OIearning rates [19] for RL-based dynamic spectrum assighme
M cellular networks has been demonstrated in [20]. The WoLF
principle states that the learning agent should learnfagten
it is losing and more slowly when winning [19]. The learning

The Q-table is updated by the corresponding base stati
each time it attempts to assign a channel to an arrivingTThd.
update equation for stateless Q-learning, as defined in [47]

given below: rates used in the spectrum assignment scheme in [20] were
Q'(c) = Q(c) + a(r — Q(c)) (2)  apos = 0.05 for a successful call arrival and,., = 0.2 for a
blocked call.
where Q(c) and Q’(c) represent the Q-value of the selected
channel before and after the update respectivelys the Figure 3 shows an average time response of 3 learning

reward associated with the most recent trial and determinerhte schemes. It was obtained by conducting 50 experiments
by the reward function, and. € [0,1] is the learning rate with the same parameters and taking an average of 50 samples
parameter which weights recent experience with respect tfor every corresponding point on the graph. 450 UEs were

previous estimates of the Q-values. randomly distributed across the network with all 9 basatat
switched on (phase 3 from Figure 2). The call arrival rate was
B. Q-table Initialisation and Reward Function Avre = 0.025 calls per minute per UE which corresponds to

an 11.25 Erlang network-wide traffic load. The first 2 schemes
%sed a fixed learning rate of 0.05 and 0.2, but the 3rd scheme
used the WOLF learning ratef,, = 0.05 and apeq = 0.2).

The latter scheme has consistently outperformed the obyers
The reward function returns two discrete values: showing a better learning speed at the start and still having
lower BP and DP after 24 hours of learning.

The values in the Q-table are initialised to zero, so all bas
stations start learning with equal choice among all avilab
channels.

e r = —1,ifthe call is blocked due to SINR being lower
than 5 dB on the selected channel.

. . . . 0.045 T T
e r = 1, if the connection is successfully established —=— BP: Fixed Learning Rate - 0.0!

using the channel chosen by the base station, i.e. i - » - BP: Fixed Learning Rate — 0.2

INR is higher than B. —w— BP: WoLF Learning Rate
S s higher tha 5d —— DP: Fixed Learning Rate — 0.
- = - DP: Fixed Learning Rate — 0.2

—— DP: WoLF Learning Rate
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C. Action Selection Strategy

The main role of an action selection strategy is to provide 003
a balance between exploration and exploitation in an RL
problem [1]. However, the problem discussed in this paper i<& 0-925
simpler than most classical RL problems in one fundamenteg
aspect - it is stateless. It is also a multi-agent (i.e. ithisted) 0.02r
RL problem, which means that the decisions made by eac
learning agent will affect the learning process of the othel
independent agents.

e T
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90 agg B Sngg 362K 303

0.01
Therefore, a greedy action selection policy is used in

this paper, i.e. each base station always selects an aeailak 0.005 S T T i e DT
channel with the highest Q-value, if any. In this way, if a ~
base station discovers a good set of channels, it will caetin 0 : : : :
using it to maximise performance and to make it easier fol time, hours
neighbouring base stations to learn to avoid the same clganne
Investigating the effect of different action selectionagtigies  Figure 3. Blocking (BP) and dropping (DP) probability timesponses using
on the algorithm performance is beyond the scope of thisipapefixed and Win-or-Learn-Fast (WoLF) learning rate schemes
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| Figure 5. Flow diagram of case-based reinforcement legrnin
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= ‘ The highlighted blocks and dashed arrows represent addi-

4 6 8 10 12 14 16 18 20 tional features of case-based RL to enable the system to lear
traffic load, Erlangs several solutions to different phases of the environmeneg.
Finure 4. locking (BP) and droobing (DP) ik in It introduces f_smother parallel i.nner _Ioop which (_:ontinlJy;us
e 4 paeady St blocking (BF) and ropping (OF) f#tes U5 observes the inputloutput relationship of the environraent
loads identifies its current model arase as referred to in the case-
based reasoning domain. In some circumstances it may also
have access to other information supplied from elsewhere to
Figure 4 shows that this improvement in BP and DPaid the identification process. The idea is that for différen
performance after 24 hours of learning is consistent acrosshases of the environment the estimated models will be suffi-
the whole range of serviceable traffic loads, constrained byiently different to be detected by the identification altjon,
the DP which at some point exceeds its 0.5% limit for all 3and for every identified model of the environment there wéll b
schemes. Therefore, this WoLF learning rate scheme was usedstored Q-table associated with it. In this way, a caseebase
in the rest of the experiments presented in this paper. RL algorithm will always know what phase the environment
is currently in and will be able to use a Q-table most suitable

for this phase.

IV. CASE-BASED REINFORCEMENTLEARNING . .
Algorithm 1 shows how a case-based stateless Q-learning

Case-based reinforcement learning is a combination o#lgorithm was implemented for dynamic spectrum assignment
reinforcement learning and case-based reasoning, where tat each base station. The lines in italics are specific to
solutions to previously known problems are used for helpingcase-based reinforcement learning. If they are removesd, th
to learn solutions to new problems. This approach is natualgorithm becomes simple stateless Q-learning used in [20]
rally suited to learning in dynamic environments with seer
identifiable phases such as cellular networks with dynami@lgorithm 1 Case-based stateless Q-learning algorithm for
topologies described in Section Il distributed spectrum assignment in cellular networks

. . . 1: Initialise Q-table
Figure 5 shows a flow diagram of the processes involved > while base station is odo

in case-based RL. It also demonstrates that it is an extensio 3 Wait for a call arrival
of regular RL, i.e. regular RL can be viewed as a special Case, it il channels are occupidten
of case-based RL. ' P

5: Block call

In Figure 5, the unfilled blocks and solid lines constitute a 6:  else
flow diagram of a regular RL algorithm. There is an outer 7: Identify network model
output-state-action loop, where outputs of the envirortmen 8 Choose Q-table based on identified model
are observed and processed to yield the environment staté: Assign a free channel with the highest Q-value
information, and then the best action is chosen for the otrre 10 Observe the outcome
state based on the policy of the learning agent. In the contextL: Update Q-table using (2)
of our dynamic spectrum assignment problem, the output of2: Store Q-table and associate it with identified model

interest is whether or not the last call got blocked, and thel3: end if

action is a channel allocated to an arriving call. Theressan ~ 14: end while

inner learning loop, whose role is to learn a good policy to be

used by the learning agent. It achieves this goal by obsgrvin  The network model is defined as a 9 element binary vector
the actions taken by the learning agent and their outcomes arnndicating the on/off status of every base station in thevoek.
directly estimating the entries in the Q-table. A policyhien  Investigating the methods of case identification for caasseld
derived from the estimated Q-table and used for choosing aRL is an important and challenging task. However, it is aldsi
action in the current environment state. of the scope of this paper. Therefore, it is assumed thayever
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base station is capable of identifying a topology phase ef th S === Traffic Load — Regular RL

network, for example, by observing the set of UEs connecte: : 1 1 1 ¢ | ——High Traffic Load - Case-Based RL

to it or by sending short broadcast messages via a backha 00121 @ : - - : : |---Low Traffic Load - RegularRL ||

link. oot - = - Low Traffic Load - Case-Based RL
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V. SIMULATION RESULTS
0.008
The RL algorithm described in Section Il with and without o

case-based reasoning features was simulated on a 9 be® 0.006

station cellular network, introduced in Section Il, withMBEs '

randomly distributed across the service area. All simaoiati

results shown in this section were obtained by averaging ove 094 I

50 experiments with identical parameters for each traffécllo :

value to ensure their general validity. Furthermore, ey 0.002 :

of case-based RL vs regular RL experiments were simulate Dol T rmery M e -

using identical call arrival and departure times to guaant o—— - - - I i

> . 0 10 20 3 40 50 60 70 8  9C
fair comparison between 2 schemes. time, hours

The time responses. shown in thIS. section are .forFigure 7. Dropping probability (DP) time response usingutegand case-

a network with dynamic topology which changes its p;ceq reinforcement leaming

phase every 5 hours as explained in Subsection II-B.

The sequence of phases used for this simulation is

[1,2,3,2,3,1,2,1,3,1,2,3,2,3,1,2,1,3]. The phase indices Figure 7 shows that the DP time responses for the same
correspond to those defined in Figure 2. This sequence Wagmyjation experiments follow very similar charactedsti
designed to include each phase 6 times, as well as evefyowever, the DP using regular RL at a higher traffic load
possible transition between any 2 of them. exceeds its 0.5% acceptable limit after most transitiots T

Figure 6 shows the network-wide BP time response usingffectively makes the network unusable, whereas the case-
case-based RL and its equivalent regular RL alternative at 2ased RL algorithm kept the DP safely within its limits.
different traffic loads - 4.5 and 11.25 Erlangs. Case-baded R
does not cause any significant improvement in performanc%
over regular RL at a lower traffic load. However, at a higherba
traffic load, the case-based RL algorithm performs signifiga
better after transitions to the previously visited phasésch
results in a lower BP level overall. The high positive rate of
change of BP straight after phase transitions suggestsathat
large number of calls is blocked in those short periods oétim

Figures 8 and 9 show a comparison of the initial (first
hours) and final (last 15 hours) performance of the case-
sed and regular RL algorithms at different traffic loads.
As expected, the initial performance of the 2 schemes is
approximately the same in terms of BP. There is a bigger
difference between the initial DP curves, because it is more
random and less controllable than BP. In distributed dycami

. A o 2 " spectrum assignment schemes used in this paper the base
This deterioration in performance is significantly mitigeht stations are not aware if they caused any dropped calls &v oth

using case-based RL. The slight mismatch in performanc ; : :
during the first 15 hours is due to the randomness of channglells’ the only feedback they getis blocking of their owrlal

selection at the early stages of learning, where all basiersta In terms of the final steady state performance during
start with an all-zero Q-table.

0.04 T T - T - T T T T T T 0.07 T T T T T T
oo —— High Traffic Load - Regular RL - = =Initial Performance - Regular RL ,'
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Figure 6. Blocking probability (BP) time response usingulag and case-  Figure 8. Initial and final blocking probability (BP) of theetwork using
based reinforcement learning regular and case-based reinforcement learning
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Figure 9. Initial and final dropping probability (DP) of thetwork using
regular and case-based reinforcement learning 8]
8

the last 15 hours, augmenting RL with case-based reasoning
functionality caused a significant improvement at highaffic

loads. Once again, the serviceable range of traffic loads id?!
determined by the DP of the network which, unlike the BP,

: ! e . [10]
exceeds its maximum acceptable limit (0.5%) at some pomnt fo
both schemes. The improvement of case-based RL over regular
RL in steady state performance resulteckir85% increase in = [11]
the maximum usable network traffic load.

These results clearly demonstrate the type of expected
performance improvements that can be obtained by employing

case-based reinforcement learning approach for distbdy-  [12]
namic spectrum assignment in cellular networks with dymami
topologies.

VI. CONCLUSION [13]

We have developed a case-based reinforcement learning
(RL) algorithm, i.e. a combination of RL and case-based rea-
soning, for distributed dynamic spectrum assignment initeob [14;
cellular networks. Simulations have shown that augmending
stateless Q-learning algorithm with case-based reasduirg
tionality has significantly improved the temporal perfomoa
of a 9 base station network with dynamic topology. It has
mitigated the performance degradation in terms of the prob[-15]
abilities of blocking and dropping after transitions betne
different phases of the network topology. This increasesl th
maximum serviceable traffic load of the network &y35%. [16]
Although case-based RL has not been applied in the wireless
communications domain, this paper has demonstrated tisat th17]
approach is naturally suited to dynamic spectrum assighmen
problems in cellular networks with dynamic topologies.
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