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Abstract—Case-based reinforcement learning is a combination
of reinforcement learning (RL) and case-based reasoning which
has been successfully applied to a variety of artificial intelligence
problems concerned with dynamic environments. This paper
demonstrates how case-based RL can be applied to distributed
dynamic spectrum assignment in cellular networks with dynamic
topologies, and what performance improvements can be expected
from using this approach in favour of a standard RL algorithm.
Simulation results have shown that augmenting a stateless Q-
learning algorithm with case-based reasoning functionality has
significantly improved the temporal performance of a 9 base
station network with dynamic topology. It has mitigated the
performance degradation in terms of the probabilities of call
blocking and dropping after transitions between different phases
of the network topology, thus substantially increasing theusable
range of traffic loads of the network.
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I. I NTRODUCTION

Spectrum assignment is a fundamental task of a mobile
cellular network, concerned with dividing the available spec-
trum into a set of channels or resource blocks and assigning
them to the incoming calls in a way which provides a good
quality of service (QoS) to the users. Modern communication
systems, such as cognitive radio and LTE networks, require
more intelligent and flexible schemes for spectrum assignment
than static spectrum allocation. Such schemes belong to the
area of dynamic spectrum assignment.

Reinforcement learning (RL) is a machine learning tech-
nique for learning solutions to various decision problems only
by trial-and error [1]. In terms of dynamic spectrum assign-
ment, RL is a state-of-the-art technique which has recently
been attracting a lot of attention in the wireless communica-
tions research community. It has been successfully appliedto
a range of problems such as LTE pico cells [2], cognitive radio
[3] [4] and multi-hop backhaul networks [5].

Topology management is an increasingly popular area of
research, especially in green communications, where a trade-
off between the QoS provided to the users and energy savings
of the network is achieved by dynamically switching various
base stations on/off, e.g. [6], [7]. This results in networks with
dynamic topologies, which are challenging environments for
reinforcement learning based dynamic spectrum assignmental-
gorithms. Furthermore, this paper is concerned with distributed

dynamic spectrum assignment, where no information exchange
is assumed among individually learning base stations. This
makes it more challenging for the base stations to learn good
policies in dynamic environments. Nevertheless, the distributed
RL approach has advantages over centralised methods in that
no communication overhead is required to achieve the learning
objective, and the network operation does not rely on a single
computing unit.

Case-based reinforcement learning is RL augmented with
case-based reasoning functionality [8]. Case-based reasoning
is broadly defined as the process of solving new problems
by using the solutions to similar problems solved in the
past [9]. Combining case-based reasoning and reinforcement
learning means that these solutions are learned by using an
RL algorithm. The combination of these two techniques has
been successfully applied to dynamic inventory control [10],
computer games [11] and RoboCup Soccer [12] [13]. However,
there is no evidence in the literature of applications of this
method in the wireless communications domain.

The purpose of this paper is to demonstrate how a case-
based reinforcement learning algorithm for distributed dynamic
spectrum assignment could be applied in a cellular network
with dynamic topology, and how it improves its temporal
blocking and dropping probability performance.

The rest of the paper is organised as follows: in Section
II the network model and the learning problem are defined.
In Section III the development of the RL algorithm for
distributed dynamic spectrum assignment is described. Section
IV introduces the concept of case-based RL and how it could
be applied to the given spectrum assignment learning problem.
In Section V the simulation results are discussed. Finally,
conclusions are given in Section VI.

II. DYNAMIC SPECTRUMASSIGNMENT LEARNING
PROBLEM

A. Cellular Network Model

The cellular network used in this paper is a 6x6 km rural
service area covered by a 3x3 grid of base stations spaced 2
km apart. The user equipment (UE) is geographically static
and randomly distributed across the whole area. The network
architecture is depicted in Figure 1. We stress that the spectrum
assignment scheme used in this paper is fully distributed
and does not employ any backhaul communications among
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Figure 1. Network architecture

the base stations or a centralised control unit. The backhaul
network is only used to carry the mobile data traffic.

The other assumptions used in the network model are listed
below:

• The available resources are divided into 20 logical
channels. Adjacent-Channel Interference is assumed
to be negligible and only uplink communications are
considered.

• Fixed transmission power of 23 dBm and 2.6 GHz
frequency band are used by all UEs.

• The minimum Signal to Interference plus Noise Ratio
(SINR) for accepting a new call is 5 dB, and the calls
are dropped if the SINR falls below 1.8 dB.

• The receiver noise floor is -100 dBm, obtained by
assuming 290 K temperature, 10 MHz total bandwidth
and 4dB noise figure.

• Each UE chooses which base station to connect to
such that the overall attenuation of its signal is min-
imised.

• The transmission is continuous until a call is com-
pleted.

B. Dynamic Topology

Green topology management schemes switch the base
stations on and off to optimise a trade-off between network
QoS and energy savings, based on the amount of local traffic
received at each base station [6] [7]. This results in cellular
networks with dynamic topologies, where the environment for
reinforcement learning based dynamic spectrum assignment
algorithms is highly dynamic and challenging to control.

The experiments reported in our paper do not implement
any particular topology management scheme. However, the
dynamic nature of the network topology is simulated by
making the network alternate among 3 different phases shown
in Figure 2. This assumption was made because this paper
focuses on the spectrum assignment algorithms and how they
perform in the networks with dynamic topologies. Topology
management itself is beyond the scope of this paper.

C. Radio Propagation Model

The propagation model used to calculate the path loss
between the UE transmitters and the base station receivers
is the WINNER II model [14]. In particular, the variation

Active base station Idle base station

1 2 3

Figure 2. 3 phases of the network topology

designed for line-of-sight (LOS) rural macro-cell scenarios
is used (WINNER II D1), since it is most relevant to the
network architecture discussed in this paper. The equationfor
calculating path loss using this model is given below:

PL = 21.5log10(d) + 44.2 + 20log10(0.2fc) + SFL (1)

wherePL is the path loss in dB,d is the distance between
the receiver and the transmitter in metres,fc is the carrier
frequency in GHz andSFL is the log-normal shadow fading
loss with the standard deviation of 4dB and 0dB mean.

D. Traffic Model

The call arrival rate is modelled as a Poisson process with
a constant mean arrival rate ofλUE (calls per minute per
UE) for all UEs in the network. Therefore, the traffic load is
approximately uniform across the whole service area. The call
duration is also an exponentially distributed random variable
with the mean holding time of 1 minute.

E. Learning Objective

The objective of the learning problem investigated in this
paper is for all base stations to prioritise among the available
channels in a fully distributed fashion, only by trial-and-error.
No communication between the base stations is assumed in
order to achieve this objective. Therefore, it is a problem of
distributed dynamic spectrum assignment.

Network-wide probabilities of call blocking (BP) and
dropping (DP) are used to assess the performance of the
spectrum assignment algorithms described in this paper. The
network is assumed to be serviceable only if the BP does not
exceed 5% and the DP does not exceed 0.5%. In general,
call dropping is considered significantly less tolerable than
blocking. Therefore, it is justifiable to set the DP threshold
10 times lower than that for BP [15] [16].

III. R EINFORCEMENTLEARNING

Reinforcement learning is a model-free type of machine
learning which is aimed at learning the desirability of taking
any available action in any state of the environment only by
trial-and error [1]. This desirability of an action is represented
by a numerical value known as the Q-value - an expected
cumulative reward for taking a particular action in a particular
state. The job of a RL algorithm is to estimate the Q-values
for every action in every state, which are all stored in an array
known as the Q-table. In some cases where an environment



is not represented by states, only the action space and a 1-
dimensional Q-table are considered [17]. This is also the case
investigated in this paper.

A. Stateless Q-Learning

One of the most successful and widely used RL algorithms
is Q-learning, introduced in [18]. Since the learning problem
described in the previous section does not require a state
representation, a simple stateless variation of this algorithm,
formulated in [17], is used in this paper.

Each base station maintains a Q-table such that every
channel has an expected reward or Q-value associated with it.
The Q-value represents the desirability of assigning a particular
channel to an arriving call. Upon each call arrival, the base
station either assigns an available channel to the call or blocks
it if no channels are available.

The Q-table is updated by the corresponding base station
each time it attempts to assign a channel to an arriving call.The
update equation for stateless Q-learning, as defined in [17], is
given below:

Q′(c) = Q(c) + α(r −Q(c)) (2)

whereQ(c) andQ′(c) represent the Q-value of the selected
channel before and after the update respectively,r is the
reward associated with the most recent trial and determined
by the reward function, andα ∈ [0, 1] is the learning rate
parameter which weights recent experience with respect to
previous estimates of the Q-values.

B. Q-table Initialisation and Reward Function

The values in the Q-table are initialised to zero, so all base
stations start learning with equal choice among all available
channels.

The reward function returns two discrete values:

• r = −1, if the call is blocked due to SINR being lower
than 5 dB on the selected channel.

• r = 1, if the connection is successfully established
using the channel chosen by the base station, i.e. if
SINR is higher than 5 dB.

C. Action Selection Strategy

The main role of an action selection strategy is to provide
a balance between exploration and exploitation in an RL
problem [1]. However, the problem discussed in this paper is
simpler than most classical RL problems in one fundamental
aspect - it is stateless. It is also a multi-agent (i.e. distributed)
RL problem, which means that the decisions made by each
learning agent will affect the learning process of the other
independent agents.

Therefore, a greedy action selection policy is used in
this paper, i.e. each base station always selects an available
channel with the highest Q-value, if any. In this way, if a
base station discovers a good set of channels, it will continue
using it to maximise performance and to make it easier for
neighbouring base stations to learn to avoid the same channels.
Investigating the effect of different action selection strategies
on the algorithm performance is beyond the scope of this paper.

D. Learning Rate

Each base station in the network learns independently,
and the learning environment, as perceived by each individual
learning agent, depends on the choices made by other learning
agents. Therefore the environment is locally dynamic from the
viewpoint of each individual base station. Furthermore, the
environment investigated in this paper is also globally dynamic
due to changes in network topology explained in Subsection
II-B.

Fixed values of the learning rate (α) are well-suited to such
dynamic learning problems, since they essentially introduce the
effect of a moving window, where the impact of older rewards
on the current estimate gradually fades away, as seen from
Equation (2).

The benefits of employing the Win-or-Learn-Fast (WoLF)
learning rates [19] for RL-based dynamic spectrum assignment
in cellular networks has been demonstrated in [20]. The WoLF
principle states that the learning agent should learn faster when
it is losing and more slowly when winning [19]. The learning
rates used in the spectrum assignment scheme in [20] were
αpos = 0.05 for a successful call arrival andαneg = 0.2 for a
blocked call.

Figure 3 shows an average time response of 3 learning
rate schemes. It was obtained by conducting 50 experiments
with the same parameters and taking an average of 50 samples
for every corresponding point on the graph. 450 UEs were
randomly distributed across the network with all 9 base stations
switched on (phase 3 from Figure 2). The call arrival rate was
λUE = 0.025 calls per minute per UE which corresponds to
an 11.25 Erlang network-wide traffic load. The first 2 schemes
used a fixed learning rate of 0.05 and 0.2, but the 3rd scheme
used the WoLF learning rate (αpos = 0.05 andαneg = 0.2).
The latter scheme has consistently outperformed the othersby
showing a better learning speed at the start and still having
lower BP and DP after 24 hours of learning.
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Figure 3. Blocking (BP) and dropping (DP) probability time responses using
fixed and Win-or-Learn-Fast (WoLF) learning rate schemes
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Figure 4. Steady state blocking (BP) and dropping (DP) probabilities using
fixed and Win-or-Learn-Fast (WoLF) learning rate schemes atdifferent traffic
loads

Figure 4 shows that this improvement in BP and DP
performance after 24 hours of learning is consistent across
the whole range of serviceable traffic loads, constrained by
the DP which at some point exceeds its 0.5% limit for all 3
schemes. Therefore, this WoLF learning rate scheme was used
in the rest of the experiments presented in this paper.

IV. CASE-BASED REINFORCEMENTLEARNING

Case-based reinforcement learning is a combination of
reinforcement learning and case-based reasoning, where the
solutions to previously known problems are used for helping
to learn solutions to new problems. This approach is natu-
rally suited to learning in dynamic environments with several
identifiable phases such as cellular networks with dynamic
topologies described in Section II.

Figure 5 shows a flow diagram of the processes involved
in case-based RL. It also demonstrates that it is an extension
of regular RL, i.e. regular RL can be viewed as a special case
of case-based RL.

In Figure 5, the unfilled blocks and solid lines constitute a
flow diagram of a regular RL algorithm. There is an outer
output-state-action loop, where outputs of the environment
are observed and processed to yield the environment state
information, and then the best action is chosen for the current
state based on the policy of the learning agent. In the context
of our dynamic spectrum assignment problem, the output of
interest is whether or not the last call got blocked, and the
action is a channel allocated to an arriving call. There is also an
inner learning loop, whose role is to learn a good policy to be
used by the learning agent. It achieves this goal by observing
the actions taken by the learning agent and their outcomes and
directly estimating the entries in the Q-table. A policy is then
derived from the estimated Q-table and used for choosing an
action in the current environment state.
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Figure 5. Flow diagram of case-based reinforcement learning

The highlighted blocks and dashed arrows represent addi-
tional features of case-based RL to enable the system to learn
several solutions to different phases of the environment atonce.
It introduces another parallel inner loop which continuously
observes the input/output relationship of the environmentand
identifies its current model orcase, as referred to in the case-
based reasoning domain. In some circumstances it may also
have access to other information supplied from elsewhere to
aid the identification process. The idea is that for different
phases of the environment the estimated models will be suffi-
ciently different to be detected by the identification algorithm,
and for every identified model of the environment there will be
a stored Q-table associated with it. In this way, a case-based
RL algorithm will always know what phase the environment
is currently in and will be able to use a Q-table most suitable
for this phase.

Algorithm 1 shows how a case-based stateless Q-learning
algorithm was implemented for dynamic spectrum assignment
at each base station. The lines in italics are specific to
case-based reinforcement learning. If they are removed, the
algorithm becomes simple stateless Q-learning used in [20].

Algorithm 1 Case-based stateless Q-learning algorithm for
distributed spectrum assignment in cellular networks

1: Initialise Q-table
2: while base station is ondo
3: Wait for a call arrival
4: if all channels are occupiedthen
5: Block call
6: else
7: Identify network model
8: Choose Q-table based on identified model
9: Assign a free channel with the highest Q-value

10: Observe the outcome
11: Update Q-table using (2)
12: Store Q-table and associate it with identified model
13: end if
14: end while

The network model is defined as a 9 element binary vector
indicating the on/off status of every base station in the network.
Investigating the methods of case identification for case-based
RL is an important and challenging task. However, it is outside
of the scope of this paper. Therefore, it is assumed that every



base station is capable of identifying a topology phase of the
network, for example, by observing the set of UEs connected
to it or by sending short broadcast messages via a backhaul
link.

V. SIMULATION RESULTS

The RL algorithm described in Section III with and without
case-based reasoning features was simulated on a 9 base
station cellular network, introduced in Section II, with 450 UEs
randomly distributed across the service area. All simulation
results shown in this section were obtained by averaging over
50 experiments with identical parameters for each traffic load
value to ensure their general validity. Furthermore, everypair
of case-based RL vs regular RL experiments were simulated
using identical call arrival and departure times to guarantee
fair comparison between 2 schemes.

The time responses shown in this section are for
a network with dynamic topology which changes its
phase every 5 hours as explained in Subsection II-B.
The sequence of phases used for this simulation is
[1, 2, 3, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 3, 1, 2, 1, 3]. The phase indices
correspond to those defined in Figure 2. This sequence was
designed to include each phase 6 times, as well as every
possible transition between any 2 of them.

Figure 6 shows the network-wide BP time response using
case-based RL and its equivalent regular RL alternative at 2
different traffic loads - 4.5 and 11.25 Erlangs. Case-based RL
does not cause any significant improvement in performance
over regular RL at a lower traffic load. However, at a higher
traffic load, the case-based RL algorithm performs significantly
better after transitions to the previously visited phases,which
results in a lower BP level overall. The high positive rate of
change of BP straight after phase transitions suggests thata
large number of calls is blocked in those short periods of time.
This deterioration in performance is significantly mitigated
using case-based RL. The slight mismatch in performance
during the first 15 hours is due to the randomness of channel
selection at the early stages of learning, where all base stations
start with an all-zero Q-table.
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Figure 6. Blocking probability (BP) time response using regular and case-
based reinforcement learning
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Figure 7. Dropping probability (DP) time response using regular and case-
based reinforcement learning

Figure 7 shows that the DP time responses for the same
simulation experiments follow very similar characteristics.
However, the DP using regular RL at a higher traffic load
exceeds its 0.5% acceptable limit after most transitions. This
effectively makes the network unusable, whereas the case-
based RL algorithm kept the DP safely within its limits.

Figures 8 and 9 show a comparison of the initial (first
15 hours) and final (last 15 hours) performance of the case-
based and regular RL algorithms at different traffic loads.
As expected, the initial performance of the 2 schemes is
approximately the same in terms of BP. There is a bigger
difference between the initial DP curves, because it is more
random and less controllable than BP. In distributed dynamic
spectrum assignment schemes used in this paper the base
stations are not aware if they caused any dropped calls in other
cells, the only feedback they get is blocking of their own calls.

In terms of the final steady state performance during
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Figure 8. Initial and final blocking probability (BP) of the network using
regular and case-based reinforcement learning
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regular and case-based reinforcement learning

the last 15 hours, augmenting RL with case-based reasoning
functionality caused a significant improvement at higher traffic
loads. Once again, the serviceable range of traffic loads is
determined by the DP of the network which, unlike the BP,
exceeds its maximum acceptable limit (0.5%) at some point for
both schemes. The improvement of case-based RL over regular
RL in steady state performance resulted in≈ 35% increase in
the maximum usable network traffic load.

These results clearly demonstrate the type of expected
performance improvements that can be obtained by employing
case-based reinforcement learning approach for distributed dy-
namic spectrum assignment in cellular networks with dynamic
topologies.

VI. CONCLUSION

We have developed a case-based reinforcement learning
(RL) algorithm, i.e. a combination of RL and case-based rea-
soning, for distributed dynamic spectrum assignment in mobile
cellular networks. Simulations have shown that augmentinga
stateless Q-learning algorithm with case-based reasoningfunc-
tionality has significantly improved the temporal performance
of a 9 base station network with dynamic topology. It has
mitigated the performance degradation in terms of the prob-
abilities of blocking and dropping after transitions between
different phases of the network topology. This increased the
maximum serviceable traffic load of the network by≈ 35%.
Although case-based RL has not been applied in the wireless
communications domain, this paper has demonstrated that this
approach is naturally suited to dynamic spectrum assignment
problems in cellular networks with dynamic topologies.
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