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Abstract—In this paper a distributed Q-learning based dy-
namic spectrum access (DSA) algorithm is applied to a cognitive
cellular system designed for providing ultra high capacity density
with only secondary access to an LTE channel. Large scale
simulations of a stadium temporary event scenario show that
the distributed Q-learning based DSA scheme provides robust
quality of service (QoS) and extremely high system throughput
densities to the users of the stadium network, whilst successfully
coexisting with a primary network of macro eNodeBs on the
same LTE channel. It is also shown that incorporating spectrum
awareness or spectrum sensing based admission control into the
DSA algorithm in this scenario does not improve its performance.
Therefore, distributed Q-learning based DSA is a viable and easily
implementable solution for facilitating secondary LTE spectrum
sharing in high capacity density cognitive cellular systems.
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I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resource blocks or subchannels and
assigning them to voice calls and data transmissions in a way
which would provide a good quality of service (QoS) to the
users. Flexible dynamic spectrum access (DSA) techniques
play a key role in utilising the given spectrum efficiently.
This has given rise to novel wireless communication systems
such as cognitive radio networks [1] and cognitive cellular
systems [2]. Such networks employ intelligent opportunistic
DSA techniques that allow them to access licensed spectrum
underutilized by the incumbent users.

The classical and most common application of spectrum
sharing in cognitive radio networks to date is use of the TV
white spaces. Such networks aim to reuse the spectrum allo-
cated to TV broadcasters for other wireless communications,
whilst eliminating harmful interference to the incumbent TV
receivers, e.g. [3][4]. A more recent problem investigated by
researchers, mobile network operators (MNOs) and regulators
is LTE and LTE-Advanced spectrum sharing [5]. In many cases
LTE spectrum sharing is required by two or more co-primary
MNOs. This can be facilitated by an emerging framework
known as licensed shared access (LSA) [5]. Here, LSA licenses
for the use of LTE spectrum are issued upon agreement
for a specific geographical area and time duration required.
Another type of LTE spectrum sharing actively investigated

within the LTE research community, is resource allocation in
heterogeneous networks (HetNets) consisting of a number of
LTE femto-cells overlaid by a high power macro-cell whilst
sharing the same LTE channel, e.g. [6][7]. In these scenarios,
the problem is often tackled by using game theory or machine
learning principles.

One of the scenarios currently considered in the EU FP7
ABSOLUTE project is a temporary cognitive cellular infras-
tructure that is deployed in and around a stadium to provide
extra capacity and coverage to the mobile subscribers and
event organizers involved in a temporary event, e.g. a football
match or a concert [8]. This scenario is depicted in Figure 1,
where a small cell network is deployed inside the stadium to
provide ultra high capacity density to the event attendees, and
an eNodeB on an aerial platform can be deployed to provide
wide area coverage, if required. In this particular study, we
investigate how the stadium small cell network can share LTE
spectrum with the local macro eNodeBs (eNBs) in the area, as
a secondary system using cognitive DSA mechanisms. There
is currently no evidence in the literature of investigating the
feasibility of providing high capacity density using a cognitive
cellular system with only secondary access to LTE spectrum.

An emerging state-of-the-art technique for intelligent DSA
is reinforcement learning (RL); a machine learning technique
aimed at building up solutions to decision problems only
through trial-and-error [9]. The most widely used RL algorithm
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Figure 1. Example of a temporary event network which supplements the
local cellular infrastructure



in both artificial intelligence and wireless communications
domains is Q-learning. Therefore, most of the literature on
RL based DSA focuses on Q-learning and its variations,
e.g. [10][11]. This paper uses a distributed Q-learning based
DSA algorithm, proposed in our previous work [12][13]. It
has been shown to work effectively in scenarios where a
cognitive cellular system has to prioritize among resources in
its own dedicated spectrum. However, it has not been applied
to problems where the spectrum is shared with incumbent
systems.

The purpose of this paper is to assess the performance
of distributed Q-learning based DSA in the cognitive cel-
lular system with secondary LTE spectrum sharing scenario
described above. We also aim to investigate the benefits of
incorporating spectrum awareness and spectrum sensing based
admission control into the DSA scheme employed by the
cognitive network to aid coexistence between the primary and
the secondary cellular systems.

The rest of the paper is organized as follows: Section
IT describes the stadium temporary event network scenario.
Section III describes the distributed Q-learning based DSA
algorithm, previously used only with a dedicated spectrum
band. In Section IV we discuss several ways in which this DSA
algorithm can be extended to facilitate coexistence between the
primary and the secondary LTE systems. Simulation results are
discussed in Section V. Finally, the conclusions are given in
Section VI.

II. TEMPORARY EVENT NETWORK SCENARIO

The cognitive cellular system investigated in this paper is
designed for a stadium event scenario, where a small cell LTE
network architecture is installed in a large stadium to provide
high mobile data capacity to the users attending the event.

The network architecture is depicted in Figure 2, where the
users are located in a circular spectator area 53.7 - 113.7 m
from the centre of the stadium. The spectator area is covered
by 78 eNBs arranged in three rings at 1 m height, e.g. with
antennas attached to the backs of the seats or to the railings
between the different row levels. Seat width is assumed to be
0.5 m, and the space between rows - 1.5 m, which yields the
total capacity of 43,103 seats.

This cognitive small cell network has access to a 20 MHz
LTE channel, also used by a network of 3 macro eNBs
whose coordinates, with respect to the centre point of the
stadium, are (—600, —750), (100,750) and (750, —800) m.
The users outside of the stadium are randomly distributed
across a circular area with 1.5 km radius, i.e. the area covered
by the macro eNBs. The small cell network is assumed to
have secondary access to the spectrum, aiming to form a high
capacity density cellular system by reusing the LTE spectrum
of the primary macro eNB network around it.

III. DISTRIBUTED Q-LEARNING BASED DYNAMIC
SPECTRUM ACCESS

In pure distributed reinforcement learning based DSA the
task of every eNB is to learn to prioritise among the available
subchannels only through trial-and-error, with no frequency
planning involved, and with no information exchange with
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Figure 2. Stadium network architecture

other eNBs, e.g. [12]. In this way, frequency reuse patterns
emerge autonomously using distributed artificial intelligence
with no requirement for any prior knowledge of a given
wireless environment.

A. Reinforcement Learning

Reinforcement learning (RL) is a model-free type of ma-
chine learning which is aimed at learning the desirability of
taking any available action in any state of the environment
only through trial-and error [9]. This desirability of an action is
represented by a numerical value known as the Q-value Q(s, a)
- the expected cumulative reward for taking a particular action
a in a particular state s.

The job of an RL algorithm is to estimate Q(s, a) for every
action in every state, which are then stored in an array known
as the Q-table. In some cases where an environment does not
have to be represented by states, only the action space and a
1-dimensional Q-table Q(a) can be considered [14].

B. Distributed Stateless Q-Learning

One of the most successful and widely used RL algorithms
is Q-learning. In particular, a simple stateless variant of this
algorithm, as formulated in [14], has been shown to be
effective for several distributed DSA learning problems, e.g.
[12][13][15].

Each eNB maintains a Q-table )(a) such that every
subchannel a has an expected reward or Q-value associated
with it. The Q-value represents the desirability of assigning
a particular subchannel to a file transmission. Upon each file
arrival, the eNB either assigns a subchannel to its transmission
or blocks it if all subchannels are occupied. It decides which
subchannel to assign based on the current Q-table and the
greedy action selection strategy described by the following
equation:

a = argmax(Q(a)), a€ A", A" C A (1)

a



where a is the subchannel chosen for assignment out of the set
of currently unoccupied subchannels A’, Q(a) is the Q-value
of subchannel a, and A is the full set of subchannels.

The Q-table is updated by the corresponding eNB each time
it attempts to assign a subchannel to a file transmission in the
form of a positive or a negative reinforcement. The update
equation for stateless Q-learning, as defined in [14], is given

below:
Q'(a) =1 —-a)Q(a) + ar 2)

where )(a) and Q' (a) represent the Q-value of the subchannel
a, before and after the update respectively, r is the reward
associated with the most recent trial and is determined by a
reward function, and « € [0, 1] is the learning rate parameter
which weights recent experience with respect to previous
estimates of the Q-values.

The reward function returns one of the following values:

e r = —1 (negative reinforcement), if the transmission is
blocked or interrupted due to low SINR on the selected
subchannel.

e 1 =1 (positive reinforcement), if SINR is above the
allowed threshold throughout the whole transmission.

The choice of the learning rate value for this type of
distributed Q-learning based DSA problems is thoroughly
investigated in [13]. The best performance is achieved by using
the Win-or-Learn-Fast (WoLF) variable learning rate principle
described by Equation (3), where a lower value of « is used
for successful trials (when r» = 1), and a higher value of «
is used for failed trials (r = —1). In this way, the learning
agents are learning faster when “losing” and more slowly and
cautiously when “winning”.

001 r=1
0‘{ 005 r=—1 3)

The values in the Q-tables are initialised to zero, so all
eNBs start learning with equal choice among all available
subchannels.

IV. COEXISTENCE WITH A PRIMARY LTE SYSTEM

Although, the distributed Q-learning algorithm described
in the previous section has been shown to work effectively
in self-organized cellular systems with dedicated spectrum,
e.g. [12][13], it has not yet been applied in a scenario where
the cognitive cellular system has to coexist with a primary
network using the same spectrum. In this paper we assess three
different methods of achieving this coexistence - a pure RL ap-
proach, a spectrum awareness database aided approach which
requires external information about spectrum management of
the primary network, and the cognitive radio type distributed
spectrum sensing approach.

A. Reinforcement Learning

The RL approach does not require any modifications to the
distributed Q-learning based DSA algorithm from the previous
section. Its aim is to autonomously learn to avoid interference
from both the primary and the secondary network at the same
time. It achieves this through a simple, robust and widely
applicable +1/-1 reward function described in Section III.

B. Spectrum Awareness

A standardized form of spectrum awareness (SA) used in
LTE cellular systems is inter-cell interference coordination
(ICIC), where the neighbouring eNBs frequently exchange
short messages over the X2 interface, containing information
which helps mitigate inter-cell interference between them [16].
For example, the format of ICIC signals in the LTE downlink
is the Relative Narrowband Transmit Power (RNTP) indicator
[17]. It consists of a bitmap which indicates on which resource
blocks an eNB is planning to transmit at high power by setting
their corresponding bits to /, i.e. on which resource blocks it
is likely to cause interference in adjacent cells. By exchanging
such messages among neighbouring eNBs frequently, every
eNB becomes “aware” of parts of the spectrum used in the
neighbouring cells.

The SA based approach to facilitating secondary LTE
spectrum sharing assumes that the cognitive cellular system
has access to the ICIC signals of the eNBs from the primary
system, thus providing a means to avoid interference between
the two systems. We assume that the ICIC signals from
the primary eNBs are received and processed by a simple
SA server located at the stadium, which in turn broadcasts
messages to all small cell eNBs stating which resource blocks
have to be avoided, because they are used at high power by
the primary system. This approach is similar to that employed
in classical TV white space cognitive radio networks, which
use geo-location databases to protect primary users of the
spectrum, as well as increase the spectrum utilization efficiency
of the cognitive radio systems, e.g. [4].

C. Spectrum Sensing

Figure 3 demonstrates how spectrum sensing functionality
is normally embedded into RL based DSA algorithms in
the context of cognitive radio [18]. It shows a flowchart
of the Q-learning scheme described in the previous section,
with a spectrum sensing module added to it. The additional
functionality afforded by spectrum sensing is highlighted by
shaded blocks and dotted lines.

Instead of simply assigning a subchannel with the highest
Q-value in the Q-table, an eNB can check the interference
level on it, and only assign it if it is below a certain allowed
threshold. If interference on the selected subchannel is too
high, an eNB can then check the interference on the next best
subchannel and so on, whilst applying negative reinforcements
to subchannels which fail these spectrum sensing checks using
Equation (2). In this way, it is expected to improve the
speed, due to increased number of negative reinforcements, and
reliability of RL based DSA schemes. This scheme provides
significantly more detailed and localised spectrum information
than the spectrum awareness scheme, but is susceptible to the
hidden terminal effect.

V. SIMULATION RESULTS AND DISCUSSION

This section presents the results of simulating the stadium
temporary event scenario described in Section II. Four DSA
schemes are applied to the secondary network:

e  “Q-learning” - distributed Q-learning with no admis-
sion control from Section III.
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Figure 3.  Flowchart of the distributed stateless Q-learning based DSA
algorithm with spectrum sensing

e  “Q-learning + spectrum awareness” - distributed Q-
learning with spectrum awareness based admission
control from Subsection IV-B, where all subchannels
currently used by the primary network at 10 dBW Tx
power are excluded from the available subchannel list
of the secondary system.

e  “Q-learning + spectrum sensing” - distributed Q-
learning with spectrum sensing based admission con-
trol from Figure 3.

e  “Spectrum sensing” - pure spectrum sensing based
scheme, which uses the same admission control algo-
rithm as the previous scheme, but with no Q-learning
involved in it (achieved by setting « to zero).

The interference threshold for the latter two schemes is 15
dB above the noise floor and 5 dB below received power at
the UE receivers, based on a 5dB SINR admission threshold
used in our previous work [12]. It was also found to achieve
acceptable trade-off between deterioration in performance at
low traffic loads (if higher threshold is used) and failure at
higher traffic loads (if lower threshold is used).

The primary system is assumed to employ a dynamic
ICIC scheme, where all three eNBs exchange their current
spectrum usage as RNTP messages every 20 ms, and exclude
the subchannels currently used by other two eNBs from their
available subchannel list [16]. We assume that they always
try to assign an available subchannel with the lowest index if
any, e.g. they always scan the availability of the subchannels

in the same order from the 1st subchannel to the 25th. In this
way, the primary network would make its spectrum usage more
predictable for the cognitive cellular system, which is in the
interests of both the primary and the secondary system.

A. Simulation Setup

500 user equipments (UEs) are randomly distributed in the
circular area from the stadium boundary (5 m from the radius
of the last row) to 1.5 km away from the stadium centre point.
25% of the stadium capacity is filled with randomly distributed
wireless subscribers, i.e. ~ 10,776 UEs. The file arrival rates
inside and outside the stadium are varied to obtain different
offered traffic values, and all simulations last 1,000,000 trans-
missions. The other parameters and assumptions used in the
simulation model are listed in Table I.

TABLE 1. NETWORK MODEL PARAMETERS AND ASSUMPTIONS
Parameter Value
Channel bandwidth 20 MHz (100 LTE physical resource blocks
(PRBs))
Subchannel bandwidth 4 PRBs: 4 x 180 kHz [17]
Frequency band 2.6 GHz

UE receiver noise floor 94 dBm (290 K temperature, 20 MHz bandwidth,

7 dB noise figure)

WINNER 1II B3 [19]

WINNER II C1 [19]

Combined WINNER II C4 with C1 term [19]

Stadium propagation model

Outdoor propagation model

Propagation model between
stadium and outdoors

Traffic model

3GPP FTP Traffic Model 1 [20], file size - 4.2 Mb
(=~0.5 MB)

Uniform random back-off between 0 and 960 ms
[21]

Retransmission scheduling

Link model 3GPP Truncated Shannon Bound model [22]
Macro eNB Tx power 10 dBW
Assumptions

Each UE is associated with an eNB with a minimum estimated downlink
pathloss to it, based on the Reference Signal Received Power (RSRP)

UEs inside the stadium are connected to the small cell network, UEs outside
are connected to the macro eNBs

Stadium network employs open loop power control, using a constant Rx power
of -74 dBm (20 dB Signal-to-Noise-Ratio)

The minimum Signal-to-Interference-plus-Noise (SINR) allowed to support data
transmission is 1.8 dB [23]

One subchannel (4 PRBs) is allocated to every data transmission

B. Simulation Results

Figure 4 shows the contour plots of the probability of
retransmission (P(re—tx)) of the secondary system, i.e. a ratio
between the number of blocked/interrupted transmissions and
the total number of transmissions, using four DSA schemes for
the secondary system listed in the beginning of this section, at
a wide range of traffic loads outside and inside the stadium.

Firstly, all schemes are affected by an increase in the
traffic load of the primary system, which shows that the
primary system produces harmful interference for the sec-
ondary system. Secondly, the distributed Q-learning scheme
provides the best and most robust QoS in terms of P(re —tx),
compared to the other schemes. This difference becomes more
significant, as the traffic load inside the stadium increases.
Incorporating spectrum sensing or spectrum awareness into
the Q-learning based DSA scheme, using the methodology
described in Section IV, only deteriorates the performance of
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Figure 4. Probability of retransmission of the secondary system at different
values of offered traffic (OT) outside (horizontal axis) and inside (vertical
axis) the stadium

the secondary system by restricting the available resources,
while Q-learning could still identify subchannels suitable for
data transmission based on distributed machine intelligence.

Figure 5 shows that using spectrum awareness or spectrum
sensing brings no extra benefit for protecting the primary
system from interference. There, P(re — tx) of the primary
system only depends on its own traffic load, and is independent
from high traffic load variations inside the stadium. In fact,
including spectrum awareness in the secondary system, at high
traffic loads of the primary system, deteriorates the QoS in
the latter. In these cases, most subchannels are occupied by
the primary system, which forces all secondary system eNBs
to choose among those few subchannels that are temporarily
available, thus aggregating sufficient amount of interference on
them to affect the primary system.

Figure 6 shows the secondary system throughput density,
secondary system throughput divided by the area covered by
the small cells, for the same set of simulations from Figures
4 and 5. These contour plots demonstrate that the Q-learning
scheme achieves the highest system throughput density. The
more centralised spectrum awareness approach has the poorest
performance at higher primary system traffic loads, since
it imposes a lot of restrictions on the spectrum usage of
the secondary system. The fully distributed DSA schemes
involving Q-learning and/or spectrum sensing are significantly
more flexible in identifying spectrum reuse opportunities. Their
performance is largely independent of the primary system,
aided by the fact that interference between the two systems is
attenuated by the stadium shell (captured by the propagation
models listed in Table I), thus reducing the need for spectrum
awareness based primary user protection.

Finally, Figure 7 compares secondary system throughput
density at the maximum traffic load outside the stadium, when
the whole LTE channel is in use by the primary system at most
times. The secondary system manages to support 57 Gbps/km?
using the distributed Q-learning algorithm from Section III,
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Figure 5. Probability of retransmission of the primary system at different
values of offered traffic (OT) outside and inside the stadium

16% and 62% higher than that achieved if spectrum sensing
or spectrum awareness are added respectively. Furthermore, as
opposed to spectrum sensing and spectrum awareness based
schemes, the Q-learning approach does not require any modi-
fications to existing LTE network infrastructures and is easily
implementable in commercially available small cell eNBs.

It must also be noted that the simulation scenario used in
this study is more favourable towards the Q-learning approach.
If both the primary and the secondary system were outdoors
with no stadium shell attenuation and significantly more in-
terference between them, the spectrum sensing or awareness
based approaches would be more likely to contribute towards
achieving coexistence between such networks. Another issue
not discussed in this paper is the temporal performance of these
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Figure 6. System throughput density (Gbps/km?) of the secondary system
at different values of offered traffic (OT) outside and inside the stadium
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DSA schemes. While pure Q-learning approach is known to
have relatively poor performance at the start of the learning
process and a significantly better steady-state performance
[12], using spectrum sensing or spectrum awareness is likely to
improve its initial behaviour and produce a more time-invariant
QoS response. Both of these issues are the subject of our future
research in this area.

VI. CONCLUSION

In this paper we apply a distributed Q-learning based
dynamic spectrum access (DSA) algorithm to a cognitive
cellular system designed for providing ultra high capacity
density with only secondary access to an LTE channel, si-
multaneously used by a primary network of macro eNodeBs.
Large scale simulations of a stadium temporary event sce-
nario show that the distributed Q-learning based DSA scheme
provides robust quality of service (QoS) and extremely high
system throughput densities (>55 Gbps/km?) to the users of
the stadium network, whilst successfully coexisting with the
primary network on the same LTE channel. It is also shown
that incorporating spectrum awareness or spectrum sensing
based admission control into the Q-learning algorithm in our
simulation scenario results in a decrease in QoS and system
throughput density of the secondary network, with no effect
on the primary system. Therefore, the simple distributed Q-
learning based DSA algorithm, previously applied only in
self-organizing cellular systems with dedicated spectrum, also
provides an effective solution for spectrum sharing between
high capacity density cognitive cellular systems and other LTE
systems. Furthermore, it does not require any modifications to
the current LTE standards and and is easily implementable in
commercially available small cell eNodeBs.
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