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Abstract—This paper assesses the robustness of the distributed
reinforcement learning (RL) approach to dynamic spectrum
access (DSA) in cellular systems with asymmetric topologies and
non-uniform offered traffic distributions. Large scale simulations
of a stadium small cell LTE network, employing a distributed Q-
learning based DSA scheme, show that such asymmetries in the
network environment cause no degradation of the QoS provided
to any part of the network.
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I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resource blocks or subchannels and
assigning them to voice calls and data transmissions in a way
which provides a good quality of service (QoS) to the users.
Flexible dynamic spectrum access (DSA) techniques play a key
role in utilising the given spectrum efficiently. For example,
one of the key requirements for future 5G systems is to achieve
factor-one reuse of the spectrum [1]. Therefore, there is an
inherent need for DSA techniques in such systems to mitigate
the effects of inter-cell interference on the system throughput
and the QoS provided to the mobile subscribers.

The cellular system used for simulation experiments in this
paper is designed for a stadium event scenario, where a small
cell LTE network is installed in a large stadium to provide
an increase in mobile data capacity to the users attending the
event. The network architecture is depicted in Figure 1. There,
the key feature of the problem investigated in this paper is
the asymmetric topology of the network caused by a localised
traffic hotspot area which requires more eNodeBs (eNBs) to
serve it. Within that area the small cell eNBs are deployed
three times as densely as in the rest of the network, where the
offered traffic is significantly lower.

An emerging state-of-the-art technique for intelligent DSA
is reinforcement learning (RL); a machine learning technique
aimed at building up solutions to decision problems only
through trial-and-error. One of the recently investigated RL
algorithms which produced excellent results in DSA scenarios
similar to that depicted in Figure 1 is the distributed stateless
Q-learning approach, e.g. [2]. However, its performance has
only been assessed using symmetric topologies and uniform
traffic loads. The purpose of this paper is to investigate the
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Figure 1. Stadium small cell network architecture with a hotspot area

adaptivity and robustness of this algorithm in cellular systems
with asymmetric topologies and non-uniform offered traffic
distributions, using the stadium small cell network from Figure
1 as an example.

The rest of the paper is organised as follows: Section
II briefly introduces distributed Q-learning based DSA. The
novel simulation results are discussed in Section III, and the
conclusions are given in Section IV.

II. DISTRIBUTED Q-LEARNING BASED DYNAMIC

SPECTRUM ACCESS

One of the most successful and widely used RL algorithms
is Q-learning. In particular, a simple stateless variant of this
algorithm, as formulated in [3], has been shown to be effective
for distributed DSA problems, e.g. [2]. Each eNB maintains
a Q-table Q(a) such that every subchannel a has an expected
reward or Q-value associated with it. Upon each file arrival, the
eNB either assigns a subchannel to its transmission or blocks
it if all subchannels are occupied. It decides which subchannel
to assign based on the current Q-table and the greedy action
selection strategy described by the following equation:

â = argmax
a

(Q(a)), a ∈ A′, A′ ⊂ A (1)



where â is the subchannel chosen for assignment out of the set
of currently unoccupied subchannels A′, Q(a) is the Q-value
of subchannel a, and A is the full set of subchannels. The
values in the Q-tables are initialised to zero, so all eNBs start
learning with equal choice among all available subchannels. A
Q-table is updated by an eNB each time it attempts to assign
a subchannel to a transmission. The recursive update equation
for stateless Q-learning, as defined in [3], is given below:

Q(a)← (1 − α)Q(a) + αr (2)

where r is the reward associated with the most recent trial
and is determined by a reward function, and α ∈ [0, 1] is the
learning rate parameter which weights recent experience with
respect to previous estimates of the Q-values. The choice of
these parameters is discussed in [2].

III. SIMULATION RESULTS AND DISCUSSION

The results presented in this section show the QoS provided
to the users of the stadium small cell network from Figure 1,
when it employs the distributed Q-learning DSA algorithm de-
scribed in the previous section. The simulations start by having
a uniform 14 Gbps/km2 offered traffic density across the whole
network with 1/3 of the eNBs switched on as depicted in the
area outside of the hotspot zone in Figure 1. After 100,000
transmissions, the hotspot area shown in Figure 1 appears with
the offered traffic density of 29 Gbps/km2 followed by the
activation of the additional eNBs (a detection delay of 5,000
transmissions is assumed). The overall simulation length is
1,000,000 transmissions. All other parameters and assumptions
of the stadium network simulation model are described in
detail in [2].

Figure 2 shows how the probability of retransmission
changes throughout the duration of the simulated scenario. The
plots were obtained by taking an average over 50 simulations
with different random seeds, user locations and initial traffic.
Firstly, it shows that there is no significant difference in the
QoS provided to the whole network and the hotspot area
inspected individually. A very similar learning curve is ob-
served in both cases. Secondly, it also shows that after 100,000
transmissions, when the localised hotspot zone appears, there
is no degradation of the network-wide QoS. This demonstrates
how well the distributed Q-learning based DSA algorithm deals
with such sudden changes in the network environment, without
any centralised coordination involved.
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Figure 2. Probability of retransmission time response of the whole network
and within the hotspot area only
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Figure 3. Spatial distribution of user throughput (UT) without and with the
presence of a traffic hotspot area

The contour plots in Figure 3 show the spatial distribution
of user throughput (UT), i.e. data rates, provided by the
stadium small cell network, with and without the presence
of the traffic hotspot area and the asymmetry in the network
topology shown in Figure 1. Firstly, despite the introduction
of the significant localised increase in the offered traffic and
the change in network topology, no notable asymmetry in
the UT provided to the users across the stadium is observed.
Secondly, the network-wide QoS did not degrade due to the
introduction of this asymmetry. On the contrary, there is a
slight improvement in UT in parts of the stadium network due
to a decrease in the size of the cells and the interference range
reduction of the eNBs within the hotspot area. This further
demonstrates that the distributed Q-learning approach to DSA
is just as effective in asymmetric network scenarios, as it is
in previously investigated symmetric and uniform spectrum
management problems.

IV. CONCLUSION

The distributed stateless Q-learning approach to DSA is
highly adaptable to asymmetries in the network topology
and offered traffic distribution. Large scale simulations of a
stadium small cell LTE network show that such an asymmetry
in the radio environment causes no degradation of the QoS
achieved by the intelligent DSA algorithm, with no centralised
coordination required.
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