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Abstract—This paper introduces a novel Q-value based adap-
tive call admission control scheme (Q-CAC) for distributed
reinforcement learning (RL) based dynamic spectrum access
(DSA) in mobile cellular networks, which provides a good quality
of service (QoS) without the need for spectrum sensing. A DSA
algorithm has been developed in this paper using the stateless
Q-learning algorithm with Win-or-Learn-Fast (WoLF) learn ing
rates. Its performance was analysed using the spatial distribution
of the probabilities of call blocking (BP) and dropping (DP)across
the network and compared to that of a 100% accurate spectrum
sensing based DSA scheme. The Q-CAC scheme demonstrated
good controllability of the blocking probability using a Q-value
based call admission threshold parameter. It significantlyreduced
spatial fluctuations in BP and DP, thus providing more cells with
acceptable quality of service (QoS).
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I. I NTRODUCTION

One of the fundamental tasks of a mobile cellular network
is to divide the available spectrum into a set of channels and
set up a protocol for assigning them to incoming calls in a
way which provides a good quality of service (QoS) to the
users. Modern communication systems, such as cognitive radio
and LTE networks, require more sophisticated and intelligent
schemes for channel assignment than static spectrum alloca-
tion. Such schemes belong to the area of dynamic spectrum
access (DSA).

Reinforcement learning (RL) is a machine learning tech-
nique for learning solutions to various decision problems only
by trial-and-error [1]. In terms of DSA, RL is a state-of-the-
art technique widely investigated within the area of wireless
communications. It has been successfully applied to a range
of problems such as LTE pico cells [2], cognitive radio [3] [4]
and multi-hop backhaul networks [5].

However, there is little evidence of work on applying fully
distributed RL to DSA at the base station level in mobile
cellular networks. Notable examples can be found in [6] and
[7]. The distributed DSA approach has a significant advantage
over centralised methods in that no information exchange is
required among independently learning base stations and the
network operation does not rely on a single computing unit.
Also, RL techniques eliminate the requirement for spectrum
sensing during the channel allocation process. The channel
assignment policies are obtained purely by trial-and error.
This RL-based trial-and-error approach has both advantages
and disadvantages compared with spectrum sensing based

DSA methods such as [8]. Its significant disadvantage is
that the fundamental source of information about the channel
availability is removed. The challenge is then to learn a
desired set of channels only from experience as opposed to
making instantaneous sensing measurements. However, if this
challenge can be overcome, the RL approach introduces some
advantages over spectrum sensing based DSA. The design
of the radio equipment is greatly simplified by eliminating
the need for spectrum sensing functionality. It also makes
the decisions made by the base stations independent of the
reliability of the spectrum sensing data.

The purpose of this paper is to present a simple distributed
Q-learning based DSA algorithm together with a novel adap-
tive Q-value based call admission control (CAC) scheme (Q-
CAC) which provides a feasible alternative to spectrum sens-
ing based DSA methods. The performance of the algorithm
is evaluated using probabilities of call blocking (BP) and
dropping (DP) and is compared to that of a perfect spectrum
sensing based DSA scheme. The results are analysed in terms
of their spatial distribution per base station, as opposed to
their average network-wide values. This type of analysis is
especially important for large scale networks, since it is better
to provide acceptable QoS across the whole network rather
than having a mixture of high QoS cells and coverage holes.

The rest of the paper is organised as follows: in Section
II the DSA problem and the network model are defined. In
Section III the development of the distributed RL algorithmfor
DSA is described. In Section IV the Q-CAC scheme for RL
based DSA is introduced, followed by a large scale simulation
of the developed algorithm in Section V. Finally, conclusions
are given in Section VI.

II. PROBLEM DESCRIPTION

A. Mobile Cellular Network
The network model used in this paper consists of a square

rural service area covered by a grid of base stations spaced 2
km apart. The initial experiments in Sections III and IV use a
small network of 4 base stations covering a 4x4 km area. After
developing the DSA and Q-CAC algorithms using this model,
it is tested on a larger 14x14 km service area covered by 49
base stations in Section V. The general network architecture is
depicted in Fig. 1. We stress that the DSA and CAC schemes
developed in this paper are fully distributed and do not employ
any backhaul communications among the base stations or a
centralised control unit.

The assumptions used in the reported simulations are listed
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Fig. 1. Network architecture

below:
• The available resources are divided into 36 logical

channels. Adjacent-Channel Interference is assumed
to be negligible and only uplink communications are
considered.

• Fixed transmission power of 23 dBm and 2.6 GHz
frequency band are used by all user equipment (UE).

• The minimum Signal to Interference plus Noise Ratio
(SINR) for accepting a new call is 5 dB, and the calls
are dropped if the SINR falls below 1.8 dB.

• The receiver noise floor is -100 dBm, obtained by
assuming 290 K temperature, 10 MHz bandwidth and
4dB noise figure.

• Each UE chooses which base station to connect to
such that the overall attenuation of its signal is min-
imised.

• The transmission is continuous until a call is com-
pleted.

B. Radio Propagation Model
The propagation model used to calculate the path loss

between the UE transmitters and the base station receivers is
the WINNER 2 model, described in detail in [9]. In particular,
the variation designed for a Line-of-Sight (LOS) rural macro-
cell scenarios is used (WINNER 2 D1), since it is most relevant
to the network architecture discussed in this paper. The formula
for calculating path loss using this model is given below:

PL = 21.5log10(d) + 44.2 + 20log10(0.2fc) + SFL (1)

wherePL is the path loss in dB,d is the distance between
the receiver and the transmitter in metres,fc is the carrier
frequency in GHz andSFL is the log-normal shadow fading
loss with the standard deviation of 4dB and 0dB mean.

C. Traffic Model
The call arrival rate is modelled as a Poisson process with

a constant mean arrival rate ofλUE (calls per minute per
UE) for all UEs in the network. The call duration is also
an exponentially distributed random variable with the mean
holding time of 1 minute.

D. Learning Objective
The objective of the learning problem investigated in this

paper is for all base stations to prioritise among the available
channels in a fully distributed fashion, only by trial-and-error.
No communication between the base stations is assumed in
order to achieve this objective. Therefore, it is a problem of
distributed DSA.

The metrics used to evaluate the performance of the algo-
rithm are the probabilities of call blocking (BP) and dropping
(DP). The network is assumed to be serviceable only if the
BP does not exceed 5% and the DP does not exceed 0.5%. In

general, call dropping is considered significantly less tolerable
than blocking. Therefore, it is justifiable to set the DP threshold
10 times lower than that for BP [10] [11]. The primary aim
of the DSA and CAC schemes discussed in this paper is to
provide acceptable QoS to as many parts of the network as
possible, as opposed to optimising the average network-wide
BP and DP.

III. R EINFORCEMENTLEARNING ALGORITHM

A. Reinforcement Learning
Reinforcement learning is a model-free type of machine

learning which is aimed at learning the desirability of taking
any available action in any state of the environment only by
trial-and error [1]. This desirability of an action is represented
by a numerical value known as the Q-value - an expected
cumulative reward for taking a particular action in a particular
state. The job of a RL algorithm is to estimate the Q-values
for every action in every state, which are all stored in an array
known as the Q-table. In some cases where an environment
is not represented by states, only the action space and a 1-
dimensional Q-table are considered [12]. This is also the case
investigated in this paper.

B. Stateless Q-Learning
One of the most successful and widely used RL algorithms

is Q-learning, introduced in [13]. Since the learning problem
described in the previous section does not require a state
representation, a simple stateless variation of this algorithm,
formulated in [12], is used in this paper.

Each base station maintains a Q-table such that every
channel has an expected reward or Q-value associated with it.
The Q-value represents the desirability of assigning a particular
channel to an arriving call. Upon each call arrival, the base
station has a choice of either assigning an available channel
to the call or blocking it if no channel can be assigned.

The Q-table is updated by the corresponding base station
each time it attempts to assign a channel to an arriving call.
The update formula for stateless Q-learning, as defined in [12],
is given below:

Q′(c) = Q(c) + α(r −Q(c)) (2)

whereQ(c) andQ′(c) represent the Q-value of the selected
channel before and after the update respectively,r is the reward
associated with the most recent trial and determined by the
reward function, andα is the learning rate parameter which
weights recent experience with respect to previous estimates
of the Q-values.

C. Q-table Initialisation and Reward Function
The values in the Q-table are initialised to zero, so all base

stations start learning with equal choice among all available
channels.

The reward function returns two discrete values:
• -1, if the call is blocked due to SINR being lower than

5 dB on the selected channel.
• +1, if the connection is successfully established using

the channel chosen by the base station, i.e. if SINR is
higher than 5 dB.

D. Action Selection Strategy
The main role of an action selection strategy is to provide

a balance between exploration and exploitation in an RL



problem [1]. However, the problem discussed in this paper is
simpler than most classical RL problems in one fundamental
aspect - it is stateless. It is also a multi-agent (i.e. distributed)
RL problem, which means that the decisions made by each
learning agent will affect the learning process of the other
independent agents.

Therefore, a greedy action selection policy is used in
this paper, i.e. each base station always selects an available
channel with the highest Q-value, if any. In this way, if a
base station discovers a good set of channels, it will continue
using it to maximise performance and to make it easier for
neighbouring base stations to learn to avoid the same channels.
Investigating the effect of different action selection strategies
on the algorithm performance is beyond the scope of this paper.

E. Learning Rate
Each base station in the network learns independently,

and the learning environment, as perceived by each individual
learning agent, depends on the choices made by other learning
agents. Therefore, even though the environment is globally
static, it is essentially dynamic from the viewpoint of each
individual base station.

Fixed values of the learning rate are well-suited to such
dynamic learning problems, since they essentially introduce
the effect of a moving window, where the impact of older
rewards on the current estimate gradually fades away [1], as
seen from Equation (2).

The DSA algorithm developed in this paper also adopts
the principle of the Win-or-Learn-Fast (WoLF) algorithm for
variable learning rate, as introduced in [14]. The WoLF princi-
ple states that the learning agent should learn faster when it is
losing and more slowly when winning. Since there are only two
possible outcomes associated with learning - blocking (“lose”)
and successful call arrival (“win”) - it is sufficient to assign a
fixed learning rate to each.

Fig. 2 shows the effect of varying the learning rate for
the positive outcome (αpos) from 0 to 0.4, whilst keeping the
learning rate for the negative outcome (αneg) fixed at 0.2. The
graph was obtained by simulating the 4 base station model
described in the previous section with a 0.17 Erlang traffic
intensity per channel. The vertical axis displays the steady-
state blocking and dropping probabilities, i.e. those to which
the RL algorithm has converged.

There is a significant degradation of performance for very
low values ofαpos. However, the best point on this graph
occurs around 0.05, which demonstrates the benefit of the
WoLF principle. Therefore, the learning rate used in the
experiments in this paper is 0.2 for call blocking and 0.05
for successful call arrivals.

IV. CAC FOR Q-LEARNING BASED DISTRIBUTED DSA

So far, the RL algorithm introduced in the previous section
does not use any form of CAC. Each base station always
assigns a channel to an arriving call, unless the whole channel
set is occupied.

In this section a novel Q-value based adaptive CAC scheme
(Q-CAC) for improving the spatial distribution of BP and
DP in a cellular network is introduced which can be used in
conjunction with RL algorithms for DSA, such as developed in
the previous section. A new parameter is incorporated into the
algorithm - the Q-value based call admission threshold (CAT).
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Fig. 2. Steady state probability of blocking (BP) and dropping (DP) of
the stateless Q-learning algorithm with different learning rates for positive
outcome (αpos), while αneg is constant at 0.2

Each base station maintains its own Q-table which ranks
the channels from best to worst based on their Q-values,
Q(c) ∈ [−1, 1] for all channels. The CAT is defined as the
minimum Q-value with which a channel can be assigned to an
arriving call. Any channels with Q-values less than the CAT are
considered unavailable for channel assignment, thus reducing
the size of the channel set available to the given base station.

A classical negative feedback control structure [15] was
employed to facilitate dynamic tuning of CAT values for
controlling the BP at each base station. This control loop is
shown in Fig. 3.

It exploits the relationship between the CAT and BP
measured at a given base station. When CAT is at -1, it does not
cut off any channels, therefore it does not have any effect on
the BP performance. However, as it increases, fewer channels
are available and, as a result, more calls are blocked.

The reference input of this control system (BPref ) is the
interval of desired BP values, and the output is the actual
BP (BP ) measured at a given base station. The experiments
in this paper use an interval of[0.04, 0.045] which leaves a
small safety margin between its upper bound and a maximum
acceptable BP of 0.05. The control scheme for tuning the CAT
is described in Algorithm 1.

Note that the CAT is set to -1, when the measured BP
exceeds the upper limit of the desired BP interval. This
eliminates overshoots in the BP response, as it is crucial not
to exceed the 5% BP limit to continuously provide acceptable
QoS. A unity negative feedback control law is used only when
the measured BP is below the lower limit of the reference
interval (lines 9-11 in Algorithm 1).K is the gain which
converts the BP error (BPerr) into the CAT correction term,

BPref BPerr Calculate
CAT

CAT Base Station
Environment

BP

+
−

Fig. 3. Negative feedback control loop for CAT tuning



Algorithm 1 CAT tuning algorithm

1: CAT = −1, BPref = [0.04, 0.045]
2: while base station is ondo
3: Wait for a call arrival
4: Try to assign a channel and measureBP
5: if BP > max(BPref ) then
6: CATnew = −1
7: else ifBP ∈ BPref then
8: CATnew = CAT
9: else ifBP < min(BPref ) then

10: BPerr = mean(BPref )−BP
11: CATnew = CAT +K ∗BPerr

12: end if
13: CAT = CATnew

14: end while

since the error in CAT is linearly proportional to the error
in BP but not necessarily of the same magnitude.K directly
affects the rate at which the CAT responds to the errors in BP,
as well as stability of this response.

The BP is measured using a moving window which stores
the outcome of the lastN call arrivals in a binary vector. Each
element is either1 for blocked call or0 for successful call.
Due to this binary nature of BP measurements, the estimated
BP value over lastN calls often experiences small increments
and decrements with every update of the vector. An input
interval [0.04, 0.045] was used in favour of a single reference
value (e.g. 0.0425), to prevent the CAT value from persistent
corrections when the measured BP value oscillates within a
close neighbourhood of the desired value.

Fig. 4 shows an example of a BP time response at an
arbitrarily selected base station, using the small 4x4 km
network model described in Section II with 0.17 Erlang traffic
intensity per channel. The BP is successfully controlled using
the Q-CAC scheme with the feedback gainK = 2, which
was activated after the base stations had enough time to learn
mature channel assignment policies (in this case, after 3000
call arrivals at the given base station). Therefore, the Q-CAC
scheme with feedback gain ofK = 2 is used in the large scale
simulation discussed in the next section.
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Fig. 4. The effect of the Q-CAC scheme on the blocking probability (BP)
time response at an individual base station running the Q-learning based DSA
algorithm

V. SIMULATION RESULTS

The developed algorithm was simulated on a 14x14 km net-
work of 49 base stations with 2000 UEs randomly distributed
across the service area. The performance of the Q-learning
based DSA algorithm with and without Q-CAC was compared
to that of a spectrum sensing based DSA scheme [16]. This
scheme was assumed to be able to measure the interference-
plus-noise power on each channel prior to making a decision
and predict the achievable SINR with 100% accuracy. Upon
each call arrival it assigns an available channel with the highest
achievable SINR, unless all of them are below the acceptance
threshold of 5dB, in which case a call gets blocked.

Fig. 5 shows the cumulative distribution function (CDF)
of the BP measured at each individual base station for the 3
schemes described above. The network-wide traffic load is 100
Erlangs obtained by setting the arrival rate toλUE = 0.05
calls per minute per user. All 3 schemes were simulated
using identical call arrival and holding times to ensure a fair
comparison of their performance. Firstly, the BP does not
exceed the 5% limit in any single cell for both Q-learning
based methods. As expected, the spectrum sensing based
approach yields superior BP performance, keeping it at zero
for all base stations. However, the important point here is that
the network is equally 100% serviceable in terms of BP using
either a spectrum sensing based approach or the Q-learning
based DSA algorithm with no spectrum sensing. Secondly, all
base stations have successfully kept their BP in the desired
interval of [0.04, 0.045] or slightly above it using the Q-CAC
scheme, thus significantly reducing the spatial fluctuations in
BP across the network.

The benefits of using the Q-CAC scheme are demonstrated
in Fig. 6. It shows the CDF of the DP at each individual
base station using the 3 schemes. Firstly, the DP exceeds the
0.5% limit at some base stations for all algorithms. Therefore,
it is the main QoS constraint. Secondly, the Q-CAC scheme
significantly improves on the spatial distribution of the DP
for the Q-learning based DSA algorithm. The Q-learning
scheme without Q-CAC provided only 71% of the network
with acceptable QoS, whereas the Q-CAC scheme raised it to
86% which is significantly closer to the result of the spectrum
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Fig. 5. CDF of the blocking probability (BP) at individual base stations for
sensing based DSA and Q-learning based DSA with and without Q-CAC at
a high traffic load
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Fig. 6. CDF of the dropping probability (DP) at individual base stations for
sensing based DSA and Q-learning based DSA with and without Q-CAC at
a high traffic load
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Fig. 7. CDF of the probabilities of blocking (BP) and dropping (DP) at
individual base stations for sensing based DSA and Q-learning based DSA
with and without Q-CAC at a medium traffic load

sensing based algorithm (94%), but with no sensing involved.
Fig. 7 shows an example of the network performance at a

lighter traffic load - 50 Erlangs. It includes the CDFs of BP and
DP of all 3 schemes. Here, the Q-CAC scheme has once again
improved the DP performance of the Q-learning based DSA
algorithm. The network is 100% serviceable in terms of BP
and DP for both the spectrum sensing based algorithm and the
Q-learning + Q-CAC scheme, which is the primary concern
of the DSA and CAC methods investigated in this paper. It
also shows that the Q-CAC scheme behaves adaptively, since
it provides similar BP performance regardless of the traffic
load.

VI. CONCLUSION

We have developed a fully distributed stateless Q-learning
based DSA algorithm with a novel Q-value based adaptive
CAC scheme (Q-CAC) for RL based DSA. It significantly
reduces the spatial fluctuations in BP and DP across a large
scale network and provides more cells with acceptable QoS
without the need for spectrum sensing. The combination of
the Q-learning based scheme with Q-CAC has been shown to

have similar performance to a 100% accurate spectrum sensing
based DSA scheme. Therefore, it is a viable yet simpler
alternative to the spectrum sensing based DSA methods.

The main advantage of the DSA and Q-CAC schemes
developed in this paper is that each base station only uses
local information about its own trials, yet delivering compa-
rable performance to spectrum sensing based methods. These
algorithms are simple, flexible and easy to implement in a real
network. They are also well suited to dynamic environments
due to their deliberately designed fixed learning rates.
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