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Abstract—This paper introduces a novel Q-value based adap- DSA methods such as [8]. Its significant disadvantage is
tive call admission control scheme (Q-CAC) for distributed  that the fundamental source of information about the chlanne
reinforcement learning (RL) based dynamic spectrum access availability is removed. The challenge is then to learn a
(DSA) in mobile cellular networks, which provides a good quéty  desired set of channels only from experience as opposed to
of service (Q0S) without the need for spectrum sensing. A DSA  aking instantaneous sensing measurements. Howeveis if th
algorithm has been developed in this paper using the stateds 1510046 can be overcome, the RL approach introduces some

Q-learning algorithm with Win-or-Learn-Fast (WoLF) learn ing . .
rates. Its performance was analysed using the spatial distsution advantages over spectrum sensing based DSA. The design

of the probabilities of call blocking (BP) and dropping (DP)across ~ Of the radio equipment is greatly simplified by eliminating
the network and compared to that of a 100% accurate spectrum  the need for spectrum sensing functionality. It also makes
sensing based DSA scheme. The Q-CAC scheme demonstrated the decisions made by the base stations independent of the
good controllability of the blocking probability using a Q-value  reliability of the spectrum sensing data.

based call admission threshold parameter. It significantlyeduced The purpose of this paper is to present a simple distributed
spatial fluctuathns in BP qnd DP, thus providing more cells vith Q-learning based DSA algorithm together with a novel adap-
acceptable quality of service (QoS). tive Q-value based call admission control (CAC) scheme (Q-

Conﬁmgsﬁ_b'a&aggnﬁgfgg?fﬁi/:dap“"e Call Admission  cAC) which provides a feasible alternative to spectrum sens
’ 9 ing based DSA methods. The performance of the algorithm

is evaluated using probabilities of call blocking (BP) and
|. INTRODUCTION dropping (DP) and is compared to that of a perfect spectrum

One of the fundamental tasks of a mobile cellular networksensing based DSA scheme. The results are analysed in terms
is to divide the available spectrum into a set of channels an@f their spatial distribution per base station, as opposed t
set up a protocol for assigning them to incoming calls in atheir average network-wide values. This type of analysis is
way which provides a good quality of service (QoS) to theespecially important for large scale networks, since itettdy
users. Modern communication systems, such as cognitive radto provide acceptable QoS across the whole network rather
and LTE networks, require more sophisticated and intallige than having a mixture of high QoS cells and coverage holes.
schemes for channel assignment than static spectrum alloca The rest of the paper is organised as follows: in Section
tion. Such schemes belong to the area of dynamic spectruththe DSA problem and the network model are defined. In
access (DSA). Section Il the development of the distributed RL algoritfon

Reinforcement learning (RL) is a machine learning tech-DSA is described. In Section IV the Q-CAC scheme for RL
nique for learning solutions to various decision problemlyo based DSA is introduced, followed by a large scale simutatio
by trial-and-error [1]. In terms of DSA, RL is a state-of-the Of the developed algorithm in Section V. Finally, concluso
art technique widely investigated within the area of wissle are given in Section VI.
communications. It has been successfully applied to a range
of problems such as LTE pico cells [2], cognitive radio [3] [4
and multi-hop backhaul networks [5]. A. Mobile Cellular Network

However, there is little evidence of work on applying fully The network model used in this paper consists of a square
distributed RL to DSA at the base station level in mobilerural service area covered by a grid of base stations spaced 2
cellular networks. Notable examples can be found in [6] anckm apart. The initial experiments in Sections Il and IV use a
[7]. The distributed DSA approach has a significant advantagsmall network of 4 base stations covering a 4x4 km area. After
over centralised methods in that no information exchange isleveloping the DSA and Q-CAC algorithms using this model,
required among independently learning base stations and tlit is tested on a larger 14x14 km service area covered by 49
network operation does not rely on a single computing unitbase stations in Section V. The general network architedsur
Also, RL techniques eliminate the requirement for spectrundepicted in Fig. 1. We stress that the DSA and CAC schemes
sensing during the channel allocation process. The channdeveloped in this paper are fully distributed and do not ewpl
assignment policies are obtained purely by trial-and errorany backhaul communications among the base stations or a
This RL-based trial-and-error approach has both advastageentralised control unit.
and disadvantages compared with spectrum sensing based The assumptions used in the reported simulations are listed

Il. PROBLEM DESCRIPTION



general, call dropping is considered significantly lesereble

/ than blocking. Therefore, it is justifiable to set the DP sirald

/ 10 times lower than that for BP [10] [11]. The primary aim

/ Access Link 7 of the DSA and CAC schemes discussed in this paper is to
/ / provide acceptable QoS to as many parts of the network as

/ , _ / possible, as opposed to optimising the average network-wid
; User Equipment Base Station BP and DP.

Fig. 1. Network architecture IIl. REINFORCEMENTLEARNING ALGORITHM

A. Reinforcement Learning
Reinforcement learning is a model-free type of machine

. - . .__learning which is aimed at learning the desirability of taki

e The ava|lable_ resources are divided into 36 logical ny avgilable action in any state gf the environmgnt Oﬁ; by
channels. Adjacent-Channel Interference 'S.assumeaial-and error [1]. This desirability of an action is repested
to be negligible and only uplink communications are ,, 5 hymerical value known as the Q-value - an expected
C(_)n5|dered. . cumulative reward for taking a particular action in a paréc

* Fixed transmission power of 23 dBm ar)d 2.6 GHZ ga10 The job of a RL algorithm is to estimate the Q-values
frequency band are used by all user equipment (UE)¢, oyery action in every state, which are all stored in aayarr

 The minimum Signal to Interference plus Noise Ratioynqn 35 the Q-table. In some cases where an environment
(SINR) for accepting a new call is 5 dB, and the callsjg ¢ represented by states, only the action space and a 1-

are dropped if the SINR falls below 1.8 dB. - ional O-tabl : 121, This is al
e The receiver noise floor is -100 dBm, obtained bydlmensmna Q-table are considered [12]. This is also tfee ca

assuming 290 K temperature, 10 MHz bandwidth andmvestlgated in this paper.
4dB noise figure. B. Stateless Q-Learning

e Each UE chooses which base station to connect to  One of the most successful and widely used RL algorithms
such that the overall attenuation of its signal is min-jg Q-learning, introduced in [13]. Since the learning peshl

below:

imised. o ) ) _ described in the previous section does not require a state
e The transmission is continuous until a call is com-representation, a simple stateless variation of this ahyor
pleted. formulated in [12], is used in this paper.

Each base station maintains a Q-table such that every
hannel has an expected reward or Q-value associated with it
he Q-value represents the desirability of assigning aquear

channel to an arriving call. Upon each call arrival, the base
station has a choice of either assigning an available cthanne
to the call or blocking it if no channel can be assigned.

The Q-table is updated by the corresponding base station

each time it attempts to assign a channel to an arriving call.
The update formula for stateless Q-learning, as defineddh [1

PL = 21.5log1o(d) + 44.2 4 20log10(0.2f.) + SFL (1) is given below:

where PL is the path loss in dB{ is the distance between Q'(c) = Q(c) + a(r — Q(c)) (2)
the receiver and the transmitter in metrgs,is the carrier
frequency in GHz and'F'L is the log-normal shadow fading
loss with the standard deviation of 4dB and 0dB mean.

B. Radio Propagation Model

The propagation model used to calculate the path los
between the UE transmitters and the base station receiwers
the WINNER 2 model, described in detail in [9]. In particylar
the variation designed for a Line-of-Sight (LOS) rural nacr
cell scenarios is used (WINNER 2 D1), since it is most relévan
to the network architecture discussed in this paper. Thadita
for calculating path loss using this model is given below:

where Q(c) and Q’(c) represent the Q-value of the selected

channel before and after the update respectivalythe reward

associated with the most recent trial and determined by the

C. Traffic Model reward function, andv is the learning rate parameter which
The call arrival rate is modelled as a Poisson process withveights recent experience with respect to previous estisnat

a constant mean arrival rate ofyz (calls per minute per of the Q-values.

UE) for all UEs in the network. The call duration is also

an exponentially distributed random variable with the mearfc- Q-table Initi_alisation and Rew_ar_d_ F_unction
holding time of 1 minute. The values in the Q-table are initialised to zero, so all base

stations start learning with equal choice among all avélab

D. Learning Objective channels.

The objective of the learning problem investigated in this  The reward function returns two discrete values:
paper is for all base stations to prioritise among the abkla e -1, if the call is blocked due to SINR being lower than
channels in a fully distributed fashion, only by trial-aadror. 5 dB on the selected channel.
No communication between the base stations is assumed in ¢  +1, if the connection is successfully established using
order to achieve this objective. Therefore, it is a probledm o the channel chosen by the base station, i.e. if SINR is
distributed DSA. higher than 5 dB.

The metrics used to evaluate the performance of the algo-
rithm are the probabilities of call blocking (BP) and dropgpi D. Action Selection Strategy
(DP). The network is assumed to be serviceable only if the The main role of an action selection strategy is to provide
BP does not exceed 5% and the DP does not exceed 0.5%. & balance between exploration and exploitation in an RL



problem [1]. However, the problem discussed in this paper it g 10° ‘ ‘ ‘
simpler than most classical RL problems in one fundamente ,L —&— Blocking Probability
aspect - it is stateless. It is also a multi-agent (i.e. itisted) —4— Dropping Probabilit
RL problem, which means that the decisions made by eac
learning agent will affect the learning process of the othel
independent agents.

Therefore, a greedy action selection policy is used in
this paper, i.e. each base station always selects an deailate |
channel with the highest Q-value, if any. In this way, if a &
base station discovers a good set of channels, it will caetin
using it to maximise performance and to make it easier foi 2|
neighbouring base stations to learn to avoid the same clanne
Investigating the effect of different action selectionagtgies 1t A
on the algorithm performance is beyond the scope of thismpape

L L L
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E. Learning Rate

Each base station in the network learns independently, pos
and the learning environment, as pgrceived by each inc&l/idu. . 2. Steady state probabiliy of blocking (BP) and drogpiDP) of
learning agent, depends on the choices m_ade by Other lgarni e stateless Q-learning algorithm with different leagnirates for positive
agents. Therefore, even though the environment is globallyicome Gipos), While ameg is constant at 0.2
static, it is essentially dynamic from the viewpoint of each '
individual base station.

Fixed values of the learning rate are well-suited to such Each base station maintains its own Q-table which ranks
dynamic learning problems, since they essentially intogdu the channels from best to worst based on their Q-values,
the effect of a moving window, where the impact of older Q(¢) € [—1,1] for all channels. The CAT is defined as the
rewards on the current estimate gradually fades away [1], aginimum Q-value with which a channel can be assigned to an
seen from Equation (2). arriving call. Any channels with Q-values less than the CAT a

The DSA algorithm developed in this paper also adoptsonsidered unavailable for channel assignment, thus iegluc
the principle of the Win-or-Learn-Fast (WoLF) algorithnrfo the size of the channel set available to the given base statio
variable learning rate, as introduced in [14]. The WoLF pFin A classical negative feedback control structure [15] was
ple states that the learning agent should learn faster when i employed to facilitate dynamic tuning of CAT values for
losing and more slowly when winning. Since there are only twocontrolling the BP at each base station. This control loop is
possible outcomes associated with learning - blockings€™  shown in Fig. 3.
and successful call arrival (“win”) - it is sufficient to agsia It exploits the relationship between the CAT and BP
fixed learning rate to each. measured at a given base station. When CAT is at -1, it does not

Fig. 2 shows the effect of varying the learning rate forcut off any channels, therefore it does not have any effect on
the positive outcomeo(,,s) from 0 to 0.4, whilst keeping the the BP performance. However, as it increases, fewer channel
learning rate for the negative outcome,(,) fixed at 0.2. The are available and, as a result, more calls are blocked.
graph was obtained by simulating the 4 base station model The reference input of this control syste®R,.;) is the
described in the previous section with a 0.17 Erlang traffidnterval of desired BP values, and the output is the actual
intensity per channel. The vertical axis displays the stead BP (BP) measured at a given base station. The experiments
state blocking and dropping probabilities, i.e. those tacwh in this paper use an interval ¢6.04,0.045] which leaves a
the RL algorithm has converged. small safety margin between its upper bound and a maximum

There is a significant degradation of performance for veryacceptable BP of 0.05. The control scheme for tuning the CAT
low values of «;,,s. However, the best point on this graph is described in Algorithm 1.
occurs around 0.05, which demonstrates the benefit of the Note that the CAT is set to -1, when the measured BP
WoLF principle. Therefore, the learning rate used in theexceeds the upper limit of the desired BP interval. This
experiments in this paper is 0.2 for call blocking and 0.05eliminates overshoots in the BP response, as it is crucial no

for successful call arrivals. to exceed the 5% BP limit to continuously provide acceptable
QoS. A unity negative feedback control law is used only when
IV. CAC FORQ-LEARNING BASED DISTRIBUTED DSA the measured BP is below the lower limit of the reference

interval (lines 9-11 in Algorithm 1).K is the gain which

So far, the RL algorithm introduced in the previous section : -
' . nverts the BP errorKP,,,.) into the CAT correction term
does not use any form of CAC. Each base station alwayg0 erts the errori{F.,) into the CAT correction term,

assigns a channel to an arriving call, unless the whole eann
set is occupied.

In this section a novel Q-value based adaptive CAC schem&~P,.; BP.., _| Calculate |CAT
(Q-CAC) for improving the spatial distribution of BP and CAT
DP in a cellular network is introduced which can be used in
conjunction with RL algorithms for DSA, such as developed in
the previous section. A new parameter is incorporated imo t
algorithm - the Q-value based call admission threshold (CAT Fig. 3. Negative feedback control loop for CAT tuning

Base Station BP
Environment




Algorithm 1 CAT tuning algorithm V. SIMULATION RESULTS

1: C’AT =—1, BPey = [0.04,0.045] The developed algorithm was simulated on a 14x14 km net-
2: while base station is odo work of 49 base stations with 2000 UEs randomly distributed
3 Wait for a call arrival across the service area. The performance of the Q-learning
4. Try to assign a channel and measi#é’ based DSA algorithm with and without Q-CAC was compared
5 if BP > max(BP,y) then to that of a spectrum sensing based DSA scheme [16]. This
6 CATnew = —1 scheme was assumed to be able to measure the interference-
7. else if BP € BP,.s then plus-noise power on each channel prior to making a decision
8: CATyew = CAT and predict the achievable SINR with 100% accuracy. Upon
9. else if BP < min(BP.s) then each call arrival it assigns an available channel with tighést

10: BFer» = mean(BP,c;) — BP achievable SINR, unless all of them are below the acceptance
L CATnew = CAT + K * BPerr threshold of 5dB, in which case a call gets blocked.

12:  end if Fig. 5 shows the cumulative distribution function (CDF)
13 CAT = CATnew of the BP measured at each individual base station for the 3
14: end while schemes described above. The network-wide traffic loadGs 10

Erlangs obtained by setting the arrival rate X = 0.05
calls per minute per user. All 3 schemes were simulated

since the error in CAT is linearly proportional to the error using identical call arrival and holding times to ensure ia fa
in BP but not necessarily of the same magnituliedirectly  comparison of their performance. Firstly, the BP does not
affects the rate at which the CAT responds to the errors in BRexceed the 5% limit in any single cell for both Q-learning
as well as stability of this response. based methods. As expected, the spectrum sensing based

The BP is measured using a moving window which storesaipproach yields superior BP performance, keeping it at zero
the outcome of the lasV call arrivals in a binary vector. Each for all base stations. However, the important point heréaa t
element is eithed for blocked call or0 for successful call. the network is equally 100% serviceable in terms of BP using
Due to this binary nature of BP measurements, the estimategither a spectrum sensing based approach or the Q-learning
BP value over lastV calls often experiences small incrementsbased DSA algorithm with no spectrum sensing. Secondly, all
and decrements with every update of the vector. An inpubase stations have successfully kept their BP in the desired
interval [0.04,0.045] was used in favour of a single reference interval of [0.04, 0.045] or slightly above it using the Q-CAC
value (e.g. 0.0425), to prevent the CAT value from persistenscheme, thus significantly reducing the spatial fluctuation
corrections when the measured BP value oscillates within 8P across the network.
close neighbourhood of the desired value. The benefits of using the Q-CAC scheme are demonstrated

Fig. 4 shows an example of a BP time response at aih Fig. 6. It shows the CDF of the DP at each individual
arbitrarily selected base station, using the small 4x4 knbase station using the 3 schemes. Firstly, the DP exceeds the
network model described in Section Il with 0.17 Erlang taffi 0.5% limit at some base stations for all algorithms. Themefo
intensity per channel. The BP is successfully controllédgis it is the main QoS constraint. Secondly, the Q-CAC scheme
the Q-CAC scheme with the feedback gaih = 2, which  significantly improves on the spatial distribution of the DP
was activated after the base stations had enough time to leafor the Q-learning based DSA algorithm. The Q-learning
mature channel assignment policies (in this case, afte0 300scheme without Q-CAC provided only 71% of the network
call arrivals at the given base station). Therefore, theAEC with acceptable QoS, whereas the Q-CAC scheme raised it to
scheme with feedback gain &f = 2 is used in the large scale 86% which is significantly closer to the result of the spettru
simulation discussed in the next section.
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! g e eaa- -- have similar performance to a 100% accurate spectrum sensin
0.9 [ =" 1 based DSA scheme. Therefore, it is a viable yet simpler
08k iy V- | alternative to the spectrum sensing based DSA methods.

o S The main advantage of the DSA and Q-CAC schemes
| ' r- 4 . . . .
0.7 J o developed in this paper is that each base station only uses
0.6/ r - 1 local information about its own trials, yet delivering coaap
& o5l J M | rable performance to spectrum sensing based methods. These
T ! ! algorithms are simple, flexible and easy to implement in & rea
R U 1 network. They are also well suited to dynamic environments
03t ,f ' 1 due to their deliberately designed fixed learning rates.
A 1
-4
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