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Abstract—This paper investigates the distributed Q-learning
approach to secondary LTE spectrum sharing, its autonomously
emerging spectrum usage patterns, and their impact on the
primary and secondary user quality of service (QoS). Large scale
simulations of a stadium temporary event scenario show that it is
capable of servicing a dramatic 51-fold increase in offered traffic,
but with no need for additional spectrum and with no perceived
degradation in the primary user QoS.
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I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resource blocks or subchannels and
assigning them to voice calls and data transmissions in a way
which provides a good quality of service (QoS) to the users.
Flexible dynamic spectrum access (DSA) techniques play a key
role in utilising the given spectrum efficiently. For example,
cognitive cellular systems employ intelligent opportunistic
DSA techniques that allow them to access licensed spectrum
underutilized by the incumbent users [1]. An emerging state-
of-the-art technique for intelligent DSA is reinforcement learn-
ing (RL); a machine learning technique aimed at building up
solutions to decision problems only through trial-and-error.

This paper investigates a high capacity density secondary
spectrum sharing problem currently considered in the EU
FP7 ABSOLUTE project. It is designed for a stadium event
scenario and involves a temporary cognitive cellular infrastruc-
ture that is deployed in a stadium to provide extra capacity
and coverage to the users and event organizers involved in a
temporary event, e.g. a football match or a concert. The small
cell eNodeBs (eNBs) inside the densely populated stadium
depicted in Figure 1 have secondary access to a 20 MHz LTE
channel, also used by a network of 3 primary eNBs (PeNBs)
in the local suburban area.

The purpose of this paper is to investigate dynamic spec-
trum sharing patterns that emerge autonomously using a dis-
tributed Q-learning approach, and to assess their impact on
the spatial distribution of the primary and secondary user
quality of service (QoS). These results bring a new insight into
the dynamics of distributed Q-learning based secondary LTE
spectrum sharing. The rest of the paper is organised as follows:
Section II briefly introduces distributed Q-learning based DSA.
The novel simulation results are discussed in Section III, and
the conclusions are given in Section IV.
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Figure 1. Stadium small cell network architecture [2]

II. DISTRIBUTED Q-LEARNING BASED DYNAMIC

SPECTRUM ACCESS

One of the most successful and widely used RL algorithms
is Q-learning. In particular, a simple stateless variant of this
algorithm, as formulated in [3], has been shown to be effective
for distributed DSA problems, e.g. [2]. Each eNB maintains
a Q-table Q(a) such that every subchannel a has an expected
reward or Q-value associated with it. Upon each file arrival, the
eNB either assigns a subchannel to its transmission or blocks
it if all subchannels are occupied. It decides which subchannel
to assign based on the current Q-table and the greedy action
selection strategy described by the following equation:

â = argmax
a

(Q(a)), a ∈ A′, A′ ⊂ A (1)

where â is the subchannel chosen for assignment out of the set
of currently unoccupied subchannels A′, Q(a) is the Q-value
of subchannel a, and A is the full set of subchannels. The
values in the Q-tables are initialised to zero, so all eNBs start
learning with equal choice among all available subchannels. A
Q-table is updated by an eNB each time it attempts to assign
a subchannel to a transmission. The recursive update equation
for stateless Q-learning, as defined in [3], is given below:

Q(a)← (1− α)Q(a) + αr (2)

where r is the reward associated with the most recent trial
and is determined by a reward function, and α ∈ [0, 1] is the
learning rate parameter which weights recent experience with
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(a) Inner ring of eNBs
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(b) Middle ring of eNBs
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(c) Outer ring of eNBs

Figure 2. Subchannel occupancy of primary eNBs, and three rings of stadium small cell eNBs

respect to previous estimates of the Q-values. The choice of
these parameters is discussed in [2].

III. SIMULATION RESULTS AND DISCUSSION

The spectrum sharing problem investigated in this paper
involves a network of small cell eNBs that share spectrum
among themselves and with a primary system of three local
eNBs operating in the area. The stadium network architecture
is shown in Figure 1. The offered traffic is 20 Mb/s outside
of the stadium and 1 Gb/s inside. All other parameters and
assumptions of the simulation model are described in detail in
[2]. The primary system employs a heuristic inter-cell inter-
ference coordination (ICIC) scheme for spectrum management
introduced in [2]. The secondary stadium network employs the
distributed Q-learning DSA scheme described in Section II.

A. Spectrum Occupancy Patterns

Figure 2 shows the spectrum occupancy patterns that
emerge autonomously in the stadium small cell network
through distributed machine intelligence, in response to a
specific spectrum occupancy pattern used by the local primary
LTE network. It demonstrates that the outer ring of small cell
eNBs from Figure 1, which is most vulnerable to interference
from the external primary system, has learnt to largely avoid
parts of the spectrum most heavily used by the PeNBs. In
contrast, the inner and the middle ring of stadium eNBs have
not suffered from the primary system interference on those
subchannels, and thus learned to fully reuse them without many
negative reinforcements, i.e. blocked/interrupted transmissions.
These results demonstrate the remarkable effectiveness of
such an autonomous RL approach, where no coordination or
spectrum planning is required.

B. Primary and Secondary User Quality of Service

An essential requirement for secondary cognitive cellular
systems is to ensure that they do not have a harmful effect on
the QoS in the primary system. The contour plots in Figure
3 show the spatial distribution of user throughput (UT), i.e.
data rates, experienced by the primary and the secondary users.
Figure 3a shows that the primary user UT varies insignificantly,
2.95-3.15 Mb/s, whilst Figure 3b shows that at the same time
an adequate QoS (≈1.5-2.2 Mb/s UT) is provided to the
ultra-dense population of secondary users. These simulation
results emphatically demonstrate that it is possible to develop

a temporary cognitive network that is capable of servicing a
dramatic increase in the offered traffic (1 Gb/s in addition to
the original 20 Mb/s, i.e. by a factor of 51), but with no need
for additional spectrum and with no notable degradation in the
primary user QoS.
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Figure 3. Spatial distribution of user throughput (UT) outside (primary users)
and inside the stadium (secondary users)

IV. CONCLUSION

The distributed Q-learning approach to DSA is capable
of facilitating autonomous emergence of efficient secondary
spectrum sharing patterns. Large scale simulations of a stadium
temporary event scenario show that it is capable of servicing
a dramatic 51-fold increase in the offered traffic, but with no
need for additional spectrum and with no perceived degrada-
tion in the primary user QoS.
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