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Abstract—This paper presents the concept of the Win-or-
Learn-Fast (WoLF) variable learning rate for distributed Q-
learning based dynamic spectrum management algorithms. It
demonstrates the importance of choosing the learning rate
correctly by simulating a large scale stadium temporary event
network. The results show that using the WoLF variable learning
rate provides a significant improvement in quality of service,
in terms of the probabilities of file blocking and interruption,
over typical values of fixed learning rates. The results have also
demonstrated that it is possible to provide a better and more
robust quality of service using distributed Q-learning with a
WoLF variable learning rate, than a spectrum sensing based
opportunistic spectrum access scheme, but with no spectrum
sensing involved.
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I. INTRODUCTION

One of the fundamental tasks of a cellular system is
spectrum management, concerned with dividing the available
spectrum into a set of resource blocks and assigning them
to voice calls and data transmissions in a way which would
provide a good quality of service (QoS) to the users. Flexible
dynamic spectrum management (DSM) techniques play a key
role in utilising the given spectrum efficiently. This gave
rise to the novel wireless communication systems such as
cognitive radio networks [1] and cognitive cellular systems
[2]. Such networks employ intelligent opportunistic spectrum
access techniques instead of the inefficient static spectrum
allocation methods used in most current cellular systems.

An emerging state-of-the-art technique for intelligent DSM
is reinforcement learning (RL), which is a machine learning
technique aimed at building up solutions to decision problems
only through trial-and-error [3]. It has been successfully ap-
plied to a range of DSM problems and scenarios, such as
cognitive radio networks [4], LTE pico-cells [5], femto-cell
networks [6] and multi-hop backhaul networks [7]. The most
widely used RL algorithm in both artificial intelligence and
wireless communications domains is Q-learning. Therefore,
most of the literature on RL based DSM focuses on Q-learning
and its variations. Furthermore, this paper is concerned with
distributed Q-learning based DSM, where no information
exchange is assumed among the individually learning base
stations. The distributed Q-learning approach has advantages
over centralised methods in that no communication overhead

is required to achieve the learning objective, and the network
operation does not rely on a single computing unit. It also
allows for easier insertion and removal of base stations from
the network, if necessary. For example, such distributed op-
portunistic types of protocols are well suited to temporary
event networks and disaster relief scenarios, where rapidly
deployable network architectures with unplanned or variable
topologies may be required to supplement any existing wireless
infrastructure [8].

The learning rate is a crucial parameter in Q-learning
algorithms that can significantly influence the dynamics of
the learning process. So far, there is nothing in the DSM
literature on the best selection of learning rate values. One of
the rare examples where the value of the learning rate is at least
specified is [6], where the authors have arbitrarily chosen a
value of 0.5, which is simply in the middle of its allowed range
of [0, 1]. In [4] the authors have swept all possible values of the
fixed learning rate to compare different exploration strategies,
but do not comment on difference in performance due to
the difference in learning rate values. The majority of other
examples in DSM literature do not even specify the learning
rate they have chosen, making it impossible to replicate their
results.

The purpose of this paper is to present the concept of the
Win-or-Learn-Fast (WoLF) variable learning rate [9] from the
artificial intelligence literature, and show how it can be applied
in the DSM context and what performance improvements can
be achieved using it, in terms of the QoS provided by the
network. The simulation results shown in this paper also aim to
demonstrate the importance of choosing the right learning rate,
and serve as a reference guide for researchers who design Q-
learning based DSM algorithms. Although the WoLF principle
has been mentioned in our previous work [10][11], we have
only tried using one pair of values there. This paper provides
a full two-dimensional sweep across all feasible learning rate
values and discovers those learning rates that outperform the
ones we or anyone else has used before in the wireless
communications domain.

The rest of the paper is organised as follows: in Section
II a cognitive cellular system model designed for stadium
temporary events is introduced. In Section III the distributed
Q-learning algorithm used for DSM is described. Section IV
presents the concept of the Win-or-Learn-Fast variable learning
rate, and discusses the simulation results obtained by using it



together with the distributed Q-learning algorithm. Finally, the
conclusions are given in Section V.

II. STADIUM TEMPORARY EVENT NETWORK

A. Network Model

The cognitive cellular system investigated in this paper is
modelled for a stadium event scenario, where a temporary
network architecture is installed in a large stadium to provide
an increase in mobile data capacity to the users attending the
event. The network architecture is depicted in Figure 1, where
the users are located in a circular spectator area 53.7 - 113.7 m
from the centre of the stadium. The spectator area is covered
by 78 eNodeBs (eNBs) arranged in three rings at 1 m height,
e.g. with antennas attached to the backs of the seats or to the
railings between the different row levels. Seat width is assumed
to be 0.5 m, and the space between rows - 1.5 m, which yields
the total capacity of 43,103 seats.

The other assumptions used in the network model are listed
below:

• The 18 MHz transmission bandwidth of an available
20 MHz LTE channel is split into 25 subchannels
(each subchannel consists of 4 physical resource
blocks, i.e. the bandwidth of each subchannel is
4×180 kHz) [12]. Only downlink communications are
considered.

• The 2.6 GHz frequency band is used by all user
equipment (UE).

• The UE receiver noise floor is -94 dBm, obtained by
assuming 290 K temperature, 20 MHz total bandwidth
and a 7 dB noise figure.
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Figure 1: Stadium network architecture

• Each UE is associated with an eNB with a minimum
estimated downlink pathloss to it, based on the Ref-
erence Signal Received Power (RSRP).

• Open loop control of the eNB transmit power is
assumed, such that its signal power received at the
UE is constant at -74 dBm (20 dB Signal to Noise
Ratio).

• The minimum Signal to Interference plus Noise Ratio
(SINR) that can support data transmission is 1.8 dB.
The minimum SINR at which a new file transmission
can be admitted is 5 dB.

• The radio propagation model used in the simulations
is WINNER II A1 [13] designed for indoor commu-
nications, due to its support of small antenna heights
and short transmission distances.

B. Traffic Model

The file inter-arrival times and file sizes are assumed to
follow Pareto distributions. Such heavy-tailed distributions are
well suited for describing typical internet traffic [14]. The mean
file size is 1Mb and the mean file arrival rate is varied to obtain
different values of offered traffic. The file transmission time
length is determined by the data rate which is calculated using
the Truncated Shannon Bound [15] as follows:

DR =

{

0 γ < γmin

αWlog2(1 + γ) γmin ≤ γ ≤ γmax

αWlog2(1 + γmax) γ > γmax

(1)

where DR is the data rate in Mb/s, W is the subchannel
bandwidth in MHz, α = 0.65 - the implementation loss of
the Shannon Bound, γ - the SINR on the link, γmin - the
minimum allowed SINR of 1.8 dB, γmax - the SINR level
which contributes to the maximum achievable data rate (21
dB).

C. Performance Metrics

The metrics used to assess the performance of the net-
work are the probability of a file transmission being blocked
and rescheduled (P (blocking)), if a suitable subchannel can-
not be assigned for it, and the probability of interruption
(P (interruption)), if the SINR on the given subchannel
drops below 1.8 dB during the file transmission. The network
is assumed to be serviceable only if P (blocking) does not
exceed 5% and P (interruption) does not exceed 0.5%. These
strict limits are especially relevant to the real-time traffic, e.g.
video streaming and Voice Over IP, where transmission delays
cannot be tolerated. They are chosen, since P (blocking) and
P (interruption) in file-based traffic are equivalent to the
probabilities of blocking and dropping in call-based traffic, and
the 5% and 0.5% limits have been used for these performance
metrics before, e.g. [10][16]. File interruptions or call drop-
ping are in general significantly less tolerable than blocked
files or calls. Therefore, it is justifiable to set the limit for
P (interruption) 10 times lower than that for P (blocking).

III. DISTRIBUTED Q-LEARNING BASED DYNAMIC

SPECTRUM MANAGEMENT

In distributed reinforcement learning based DSM the task
of every eNB is to learn to prioritise among the available



subchannels only by trial-and-error, with no spectrum sensing
or frequency planning involved, and with no information
exchange with the other eNBs.

A. Reinforcement Learning

Reinforcement learning is a model-free type of machine
learning which is aimed at learning the desirability of taking
any available action in any state of the environment only by
trial-and error [3]. This desirability of an action is represented
by a numerical value known as the Q-value - an expected
cumulative reward for taking a particular action in a particular
state. The job of an RL algorithm is to estimate the Q-values
for every action in every state, which are all stored in an array
known as the Q-table. In some cases where an environment
is not represented by states, only the action space and a 1-
dimensional Q-table are considered [17]. This is also the case
investigated in this paper.

B. Stateless Q-Learning

One of the most successful and widely used RL algorithms
is Q-learning, introduced in [18]. Since the learning problem
described in the previous section does not require a state
representation, a simple stateless variation of this algorithm,
as formulated in [17], is used in this paper.

Each eNB maintains a Q-table such that every subchannel
has an expected reward or Q-value associated with it. The
Q-value represents the desirability of assigning a particular
channel to a file transmission. Upon each file arrival, the eNB
either assigns an available subchannel to its transmission or
blocks it if no subchannels are available.

The Q-table is updated by the corresponding eNB each time
it attempts to assign a subchannel to a file transmission. The
update equation for stateless Q-learning, as defined in [17], is
given below:

Q′(c) = Q(c) + α(r −Q(c)) (2)

where Q(c) and Q′(c) represent the Q-value of the selected
subchannel c, before and after the update respectively, r is the
reward associated with the most recent trial and determined
by the reward function, and α ∈ [0, 1] is the learning rate
parameter which weights recent experience with respect to
previous estimates of the Q-values.

C. Q-table Initialisation and Reward Function

The values in the Q-tables are initialised to zero, so all
eNBs start learning with equal choice among all available
subchannels.

The reward function returns two discrete values:

• r = −1, if the file is blocked due to SINR being lower
than the minimum admission threshold (5 dB) on the
selected subchannel, or if it is later interrupted due
to SINR being lower than the minimum transmission
threshold of 1.8 dB.

• r = 1, if the file is successfully transmitted using the
subchannel chosen by the eNB, i.e. if SINR is higher
than 5 dB at the start and higher than 1.8 dB until the
end of transmission.

D. Action Selection Strategy

The main role of an action selection strategy is to provide
a balance between exploration and exploitation in an RL
problem [3]. However, the problem discussed in this paper is
simpler than most classical RL problems in one fundamental
aspect - it is stateless. It is also a multi-agent (i.e. distributed)
RL problem, which means that the decisions made by each
eNB will affect the learning process of the other independent
eNBs.

Therefore, a greedy action selection policy is used in this
algorithm, i.e. each eNB always selects an available subchannel
with the highest Q-value, if any. In this way, if an eNB
discovers a good set of subchannels, it will continue using it to
maximise performance and to make it easier for neighbouring
base stations to learn to avoid the same subchannels.

E. Learning Rate

Every eNB in the network learns independently, and the
learning environment, as perceived by each individual learning
agent, depends on the choices made by other learning agents.
Therefore the environment is locally dynamic from the view-
point of every individual eNB.

Time-invariant values of the learning rate (α) are well-
suited to such dynamic learning problems, since they essen-
tially introduce the effect of a moving window, where the
impact of older rewards on the current estimate gradually fades
away, as seen from Equation (2).

Subsection IV-A explores the effect of varying the learning
rate values across an appropriate range. It also presents and
analyses a novel concept of the Win-or-Learn-Fast variable
learning rate for distributed Q-learning based DSM.

IV. CHOOSING THE LEARNING RATE

A. Win-or-Learn-Fast Learning Rate

This section of the paper explores the benefits of using the
Win-or-Learn-Fast (WoLF) variable learning rate in distributed
Q-learning based DSM. The WoLF principle states that the
learning agent should learn faster when it is losing and more
slowly when winning [9]. The adaptation of this variable
learning rate principle in stateless Q-learning applied to DSM
has been used by us in previous preliminary work [10][11].
However, that work focused on other topics, and the WoLF
method of choosing the learning rate was not optimised,
analysed or described in any depth.

The idea of a WoLF learning rate, proposed by us in [10]
in the same multi-agent stateless Q-learning setting, is to split
the value of the learning rate α into two cases - αwin and
αlose - when the subchannel chosen by the eNB successfully
supported the file transmission and when it failed (blocking or
interruption) respectively. If αwin < αlose, the WoLF principle
holds, since the agent is learning slower on successful trials
(αwin) and faster on the failed ones (αlose).

One of the advantages of using a WoLF learning rate is
that it encourages thorough exploration in the early stages of
learning. Since all values in the Q-tables are initially set to
zero and the greedy action selection strategy is followed, if an
eNB has several successful trials on a particular subchannel,



its Q-value will increase and it will continue to be used. If,
later on, the interference from other eNBs on this subchannel
significantly increases, it will take fewer failed trials for its
Q-value to fall below zero than it would if a fixed value of
α was used. This can be proven by splitting the learning rate
value into two cases - αwin and αlose, substituting the reward
values into Equation (2) and rearranging the terms to yield the
expression for the change in Q-value ∆Q(c) = Q′(c) −Q(c)
shown below:

∆Q(c) =

{

−αwinQ(c) + αwin r = 1
−αloseQ(c)− αlose r = −1

(3)

Comparing |∆Q(c)| in both cases proves that, if Q(c) >
αwin − αlose

αwin + αlose
and αwin < αlose, |∆Q(c)| is greater when

r = −1, i.e. the changes in the Q-values are bigger when the
negative rewards are received.

It would also have a similar effect if there has been a
change in the learning environment, e.g. a change in network
topology or traffic distribution. In such cases an eNB would
start exploring other subchannels sooner. Another advantage
of the WoLF learning rate is that at any stage of the operation
of the network the ratio of successful to failed trials would
need to be higher for a subchannel to maintain a high Q-value
and keep being assigned, which is consistent with the goal of
achieving low probabilities of blocking and interruption in a
cellular system.

The simulation model of a stadium network presented in
Section II is used to test the QoS provided to the UEs, using
different combinations of the values of αwin and αlose. 25%
of the overall stadium capacity is randomly filled with wireless
subscribers, i.e. ≈ 10,776 randomly distributed UEs.

B. Simulation Results

The contour plots in Figure 2 show the probabilities of
file blocking and interruption after performing the simulations
of the distributed Q-learning based DSM algorithm described
in the previous section, using different combinations of αwin

and αlose. The simulations lasted 800,000 transmissions, which
constituted 800,000 reinforcement learning trials for all eNBs
in total, and took approximately 50 minutes at 256 Mb/s
offered traffic. The P (blocking) and P (interruption) values
shown on the contour plots are calculated over the last 240,000
transmissions, when the eNBs have had sufficient time to learn
mature DSM policies. The values of αwin and αlose varied in
the range [0.005, 0.5].

Both plots demonstrate the performance improvement
when the WoLF principle of varying the learning rate is used.
The best performance is achieved in the small darkest region
of the plots around the point (0.01, 0.05). The fixed learning
rate values lie on the 45o diagonal (where αwin = αlose), and
perform significantly worse than those in the “WoLF region”
above and to the left of the diagonal.

Figure 3 shows the difference in the QoS time response (i.e.
how QoS improves over time) of the distributed Q-learning
based DSM algorithm with a typical choice of the fixed
learning rate value of 0.1, and the WoLF variable learning rate
of {0.01, 0.05}. The first P (blocking) and P (interruption)
points on the graphs at zero time are obtained by simulating
a random dynamic spectrum access scheme, where all eNBs
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Figure 2: Network-wide quality of service at 256 Mb/s offered
traffic, with different values of the learning rates for the
positive (αwin) and the negative outcome (αlose)

randomly choose among all available subchannels. This effec-
tively represents the starting point of a Q-learning algorithm
with a Q-table initialised to zero.

In the early stages of learning, in ≈10 minutes, the WoLF
learning rate achieves better QoS due to its increased adaptivity
to changes in the policies of all eNBs, which are affecting the
learning process of every individual eNB. However, after ≈40
minutes, long after the Q-learning algorithm has reached its
steady state, the QoS achieved using the WoLF learning rate
is still significantly better, which suggests that fixed learning
rates cause the Q-learning algorithm to converge on poorer
solutions, compared to the WoLF variable learning rates.
The results presented in the next subsection show that this
improvement is consistent across a range of different traffic
loads. Therefore, it is not necessary to optimise the WoLF
learning rate values for each of them individually.
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Figure 3: The difference between the quality of service time
responses at 256 Mb/s offered traffic, using the fixed learning
rate of 0.1, and the Win-or-Learn-Fast variable learning rate
of {0.01, 0.05}

C. Comparison with Spectrum Sensing Based DSM

In Figure 4 the difference in steady state probabilities of
file blocking and interruption, using the fixed learning rate of
0.1 and the WoLF learning rate {0.01, 0.05}, is demonstrated
across the full range of serviceable traffic loads. It also com-
pares the results with the performance of a simple opportunistic
spectrum sensing based DSM scheme described by the flow
diagram in Figure 5. The interference threshold used for it
was -84 dBm, which is 10 dB above the noise floor and 10
dB below the received power at the UE receivers.

Firstly, the WoLF learning rate introduced a significant and
consistent improvement in the QoS, especially the probability
of interruption, achieved by the distributed Q-learning based
DSM algorithm across all traffic loads above ≈80 Mb/s. At
lower traffic loads P (blocking) and P (interruption) are
very low in both cases. Secondly, the spectrum sensing based
scheme performed better in terms of P (blocking) at low and
medium traffic loads due to its listen-before-talk capability.
However, as the traffic load increased, its performance deterio-
rated significantly faster than that achieved by both Q-learning
schemes, exceeding the 5% limit at the offered traffic of ≈280

Mb/s. The most significant result from these plots is the dif-
ference in P (interruption) achieved by the spectrum sensing
based DSM scheme and the Q-learning algorithm with the
WoLF variable learning rate. The “Q-learning+WoLF” scheme
has achieved a ≈44% lower P (interruption) on average,
compared to the spectrum sensing based DSM scheme at the
traffic loads between 65 and 280 Mb/s. At higher traffic loads
P (interruption) achieved by the spectrum sensing based
scheme is lower due to the rapid increase in P (blocking).
The “Q-learning+WoLF” scheme has also managed to provide
a slightly wider range of traffic loads with acceptable QoS,
i.e. where P (blocking) < 5% and P (interruption) < 0.5%,
than that provided by the spectrum sensing based scheme (by
≈ 3%), whereas the regular Q-learning algorithm with a fixed
learning rate was significantly outperformed by both schemes
in this regard.

Although no spectrum sensing was involved in the “Q-
learning + WoLF” approach, it has outperformed the spectrum
sensing based DSM algorithm in terms of the probability of
interruption, the range of usable traffic loads, and the overall
robustness to changes in the network traffic load. The only
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Figure 4: Steady state quality of service at different traffic
loads, using Q-learning with α = 0.1, Q-learning with the
Win-or-Learn-Fast variable learning rate, and spectrum sensing
based dynamic spectrum management
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Figure 5: Flow diagram of the spectrum sensing based oppor-
tunistic spectrum access scheme used for baseline comparison

disadvantage of the Q-learning approach is the initial learning
period, where the QoS starts at a very poor level due to the
lack of information in the Q-tables and it takes the eNBs time
to learn mature DSM policies (e.g. time responses in Figure
3). However, this poor initial performance can be significantly
mitigated by extending the simple Q-learning algorithm to
more advanced schemes, such as transfer learning [19], case-
based reinforcement learning [11], heuristically accelerated
reinforcement learning [20], e.g. using spectrum sensing and/or
a radio environment map [21] as heuristic acceleration, etc.

V. CONCLUSION

In this paper we demonstrate the importance of the learn-
ing rate parameter in distributed Q-learning based dynamic
spectrum management (DSM) in cognitive cellular systems,
and its effect on the quality of service (QoS) provided to
the users of the network. A concept of the Win-or-Learn-
Fast (WoLF) variable learning rate is presented in the context
of DSM. We empirically demonstrate that it is possible to
achieve significant QoS performance improvements, in terms
of the probabilities of file blocking and interruption, simply by
choosing an appropriate WoLF learning rate for a distributed
Q-learning based DSM algorithm. Large scale simulations of
a stadium temporary event network show that a distributed
Q-learning algorithm with a WoLF variable learning rate can
outperform a spectrum sensing based opportunistic spectrum
access scheme in terms of the probability of interruption and
overall range of serviceable traffic loads, with no spectrum
sensing involved. This ensures that the QoS provided by a sim-
ple distributed Q-learning based DSM algorithm is maximised
or near-maximised, before it is extended to more sophisticated
schemes, such as transfer learning, case-based reinforcement
learning, reinforcement learning heuristically accelerated by
spectrum sensing and radio environment maps.
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